update readme
This commit is contained in:
441
README.md
441
README.md
@ -1,4 +1,4 @@
|
||||
# ORMar
|
||||
# ormar
|
||||
<p>
|
||||
<a href="https://pypi.org/project/ormar">
|
||||
<img src="https://img.shields.io/pypi/v/ormar.svg" alt="Pypi version">
|
||||
@ -20,27 +20,43 @@
|
||||
</a>
|
||||
</p>
|
||||
|
||||
The `ormar` package is an async ORM for Python, with support for Postgres,
|
||||
MySQL, and SQLite.
|
||||
### Overview
|
||||
|
||||
The `ormar` package is an async mini ORM for Python, with support for **Postgres,
|
||||
MySQL**, and **SQLite**.
|
||||
|
||||
The main benefit of using `ormar` are:
|
||||
|
||||
* getting an **async ORM that can be used with async frameworks** (fastapi, starlette etc.)
|
||||
* getting just **one model to maintain** - you don't have to maintain pydantic and other orm model (sqlalchemy, peewee, gino etc.)
|
||||
|
||||
The goal was to create a simple ORM that can be **used directly (as request and response models) with [`fastapi`][fastapi]** that bases it's data validation on pydantic.
|
||||
|
||||
Ormar - apart form obvious ORM in name - get it's name from ormar in swedish which means snakes, and ormar(e) in italian which means cabinet.
|
||||
|
||||
And what's a better name for python ORM than snakes cabinet :)
|
||||
|
||||
### Documentation
|
||||
|
||||
Check out the [documentation][documentation] for details.
|
||||
|
||||
### Dependencies
|
||||
|
||||
Ormar is built with:
|
||||
|
||||
* [`SQLAlchemy core`][sqlalchemy-core] for query building.
|
||||
* [`databases`][databases] for cross-database async support.
|
||||
* [`pydantic`][pydantic] for data validation.
|
||||
|
||||
### Migrations
|
||||
|
||||
Because ormar is built on SQLAlchemy core, you can use [`alembic`][alembic] to provide
|
||||
database migrations.
|
||||
|
||||
The goal was to create a simple ORM that can be used directly (as request and response models) with [`fastapi`][fastapi] that bases it's data validation on pydantic.
|
||||
Initial work was inspired by [`encode/orm`][encode/orm], later I found `ormantic` and used it as a further inspiration.
|
||||
The encode package was too simple (i.e. no ability to join two times to the same table) and used typesystem for data checks.
|
||||
|
||||
**ormar is still under development:** We recommend pinning any dependencies with `ormar~=0.3.6`
|
||||
|
||||
**ormar is still under development:** We recommend pinning any dependencies with `ormar~=0.2.0`
|
||||
### Quick Start
|
||||
|
||||
**Note**: Use `ipython` to try this from the console, since it supports `await`.
|
||||
|
||||
@ -52,69 +68,6 @@ import sqlalchemy
|
||||
database = databases.Database("sqlite:///db.sqlite")
|
||||
metadata = sqlalchemy.MetaData()
|
||||
|
||||
class Note(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "notes"
|
||||
database = database
|
||||
metadata = metadata
|
||||
|
||||
# primary keys of type int by dafault are set to autoincrement
|
||||
id: ormar.Integer(primary_key=True)
|
||||
text: ormar.String(length=100)
|
||||
completed: ormar.Boolean(default=False)
|
||||
# as of ormar >=0.3.2 you can provide a list of choices that will be validated
|
||||
flag: ormar.String(default='To do', choices=['To do', 'Pending', 'Done'])
|
||||
|
||||
# Create the database
|
||||
engine = sqlalchemy.create_engine(str(database.url))
|
||||
metadata.create_all(engine)
|
||||
|
||||
# .create()
|
||||
await Note.objects.create(text="Buy the groceries.", completed=False)
|
||||
await Note.objects.create(text="Call Mum.", completed=True)
|
||||
await Note.objects.create(text="Send invoices.", completed=True)
|
||||
|
||||
# .all()
|
||||
notes = await Note.objects.all()
|
||||
|
||||
# .filter()
|
||||
notes = await Note.objects.filter(completed=True).all()
|
||||
|
||||
# exact, iexact, contains, icontains, lt, lte, gt, gte, in
|
||||
notes = await Note.objects.filter(text__icontains="mum").all()
|
||||
|
||||
# exclude - from ormar >= 0.3.1
|
||||
notes = await Note.objects.exclude(text__icontains="mum").all()
|
||||
|
||||
# startswith, istartswith, endswith, iendswith - from ormar >= 0.3.3
|
||||
notes = await Note.objects.filter(text__iendswith="mum.").all()
|
||||
notes = await Note.objects.filter(text__istartswith="call").all()
|
||||
notes = await Note.objects.filter(text__startswith="Buy").all()
|
||||
|
||||
# .get()
|
||||
note = await Note.objects.get(id=1)
|
||||
|
||||
# .update()
|
||||
await note.update(completed=True)
|
||||
|
||||
# .delete()
|
||||
await note.delete()
|
||||
|
||||
# 'pk' always refers to the primary key
|
||||
note = await Note.objects.get(pk=2)
|
||||
note.pk # 2
|
||||
```
|
||||
|
||||
Ormar supports loading and filtering across foreign keys...
|
||||
|
||||
```python
|
||||
import databases
|
||||
import ormar
|
||||
import sqlalchemy
|
||||
|
||||
database = databases.Database("sqlite:///db.sqlite")
|
||||
metadata = sqlalchemy.MetaData()
|
||||
|
||||
|
||||
class Album(ormar.Model):
|
||||
class Meta:
|
||||
@ -155,7 +108,7 @@ track = await Track.objects.get(title="The Bird")
|
||||
# We have an album instance, but it only has the primary key populated
|
||||
print(track.album) # Album(id=1) [sparse]
|
||||
print(track.album.pk) # 1
|
||||
print(track.album.name) # Raises AttributeError
|
||||
print(track.album.name) # None
|
||||
|
||||
# Load the relationship from the database
|
||||
await track.album.load()
|
||||
@ -184,310 +137,33 @@ tracks = await Track.objects.limit(1).all()
|
||||
assert len(tracks) == 1
|
||||
```
|
||||
|
||||
Since version >=0.3 Ormar supports also many to many relationships
|
||||
```python
|
||||
import databases
|
||||
import ormar
|
||||
import sqlalchemy
|
||||
|
||||
database = databases.Database("sqlite:///db.sqlite")
|
||||
metadata = sqlalchemy.MetaData()
|
||||
|
||||
class Author(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "authors"
|
||||
database = database
|
||||
metadata = metadata
|
||||
|
||||
id: ormar.Integer(primary_key=True)
|
||||
first_name: ormar.String(max_length=80)
|
||||
last_name: ormar.String(max_length=80)
|
||||
|
||||
|
||||
class Category(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "categories"
|
||||
database = database
|
||||
metadata = metadata
|
||||
|
||||
id: ormar.Integer(primary_key=True)
|
||||
name: ormar.String(max_length=40)
|
||||
|
||||
|
||||
class PostCategory(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "posts_categories"
|
||||
database = database
|
||||
metadata = metadata
|
||||
|
||||
|
||||
class Post(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "posts"
|
||||
database = database
|
||||
metadata = metadata
|
||||
|
||||
id: ormar.Integer(primary_key=True)
|
||||
title: ormar.String(max_length=200)
|
||||
categories: ormar.ManyToMany(Category, through=PostCategory)
|
||||
author: ormar.ForeignKey(Author)
|
||||
|
||||
guido = await Author.objects.create(first_name="Guido", last_name="Van Rossum")
|
||||
post = await Post.objects.create(title="Hello, M2M", author=guido)
|
||||
news = await Category.objects.create(name="News")
|
||||
|
||||
# Add a category to a post.
|
||||
await post.categories.add(news)
|
||||
# or from the other end:
|
||||
await news.posts.add(post)
|
||||
|
||||
# Creating columns object from instance:
|
||||
await post.categories.create(name="Tips")
|
||||
assert len(await post.categories.all()) == 2
|
||||
|
||||
# Many to many relation exposes a list of columns models
|
||||
# and an API of the Queryset:
|
||||
assert news == await post.categories.get(name="News")
|
||||
|
||||
# with all Queryset methods - filtering, selecting columns, counting etc.
|
||||
await news.posts.filter(title__contains="M2M").all()
|
||||
await Category.objects.filter(posts__author=guido).get()
|
||||
|
||||
# columns models of many to many relation can be prefetched
|
||||
news_posts = await news.posts.select_related("author").all()
|
||||
assert news_posts[0].author == guido
|
||||
|
||||
# Removal of the relationship by one
|
||||
await news.posts.remove(post)
|
||||
# or all at once
|
||||
await news.posts.clear()
|
||||
|
||||
```
|
||||
|
||||
Since version >=0.3.4 Ormar supports also queryset level delete and update statements,
|
||||
as well as get_or_create and update_or_create
|
||||
```python
|
||||
import databases
|
||||
import ormar
|
||||
import sqlalchemy
|
||||
|
||||
database = databases.Database("sqlite:///db.sqlite")
|
||||
metadata = sqlalchemy.MetaData()
|
||||
|
||||
class Book(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "books"
|
||||
metadata = metadata
|
||||
database = database
|
||||
|
||||
id: ormar.Integer(primary_key=True)
|
||||
title: ormar.String(max_length=200)
|
||||
author: ormar.String(max_length=100)
|
||||
genre: ormar.String(max_length=100, default='Fiction', choices=['Fiction', 'Adventure', 'Historic', 'Fantasy'])
|
||||
|
||||
await Book.objects.create(title='Tom Sawyer', author="Twain, Mark", genre='Adventure')
|
||||
await Book.objects.create(title='War and Peace', author="Tolstoy, Leo", genre='Fiction')
|
||||
await Book.objects.create(title='Anna Karenina', author="Tolstoy, Leo", genre='Fiction')
|
||||
await Book.objects.create(title='Harry Potter', author="Rowling, J.K.", genre='Fantasy')
|
||||
await Book.objects.create(title='Lord of the Rings', author="Tolkien, J.R.", genre='Fantasy')
|
||||
|
||||
# update accepts kwargs that are used to update queryset model
|
||||
# all other arguments are ignored (argument names not in own model table)
|
||||
await Book.objects.filter(author="Tolstoy, Leo").update(author="Lenin, Vladimir") # update all Tolstoy's books
|
||||
all_books = await Book.objects.filter(author="Lenin, Vladimir").all()
|
||||
assert len(all_books) == 2
|
||||
|
||||
# delete accepts kwargs that will be used in filter
|
||||
# acting in same way as queryset.filter(**kwargs).delete()
|
||||
await Book.objects.delete(genre='Fantasy') # delete all fantasy books
|
||||
all_books = await Book.objects.all()
|
||||
assert len(all_books) == 3
|
||||
|
||||
# queryset needs to be filtered before deleting/ updating to prevent accidental overwrite
|
||||
# to update whole database table each=True needs to be provided as a safety switch
|
||||
await Book.objects.update(each=True, genre='Fiction')
|
||||
all_books = await Book.objects.filter(genre='Fiction').all()
|
||||
assert len(all_books) == 3
|
||||
|
||||
# helper get/update or create methods of queryset
|
||||
# if not exists it will be created
|
||||
vol1 = await Book.objects.get_or_create(title="Volume I", author='Anonymous', genre='Fiction')
|
||||
assert await Book.objects.count() == 1
|
||||
|
||||
# if exists it will be returned
|
||||
assert await Book.objects.get_or_create(title="Volume I", author='Anonymous', genre='Fiction') == vol1
|
||||
assert await Book.objects.count() == 1
|
||||
|
||||
# if not exist the instance will be persisted in db
|
||||
vol2 = await Book.objects.update_or_create(title="Volume II", author='Anonymous', genre='Fiction')
|
||||
assert await Book.objects.count() == 1
|
||||
|
||||
# if pk or pkname passed in kwargs (like id here) the object will be updated
|
||||
assert await Book.objects.update_or_create(id=vol2.id, genre='Historic')
|
||||
assert await Book.objects.count() == 1
|
||||
|
||||
```
|
||||
|
||||
|
||||
Since version >=0.3.5 Ormar supports also bulk operations -> bulk_create and bulk_update
|
||||
```python
|
||||
import databases
|
||||
import ormar
|
||||
import sqlalchemy
|
||||
|
||||
database = databases.Database("sqlite:///db.sqlite")
|
||||
metadata = sqlalchemy.MetaData()
|
||||
|
||||
|
||||
class ToDo(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "todos"
|
||||
metadata = metadata
|
||||
database = database
|
||||
|
||||
id: ormar.Integer(primary_key=True)
|
||||
text: ormar.String(max_length=500)
|
||||
completed: ormar.Boolean(default=False)
|
||||
|
||||
# create multiple instances at once with bulk_create
|
||||
await ToDo.objects.bulk_create(
|
||||
[
|
||||
ToDo(text="Buy the groceries."),
|
||||
ToDo(text="Call Mum.", completed=True),
|
||||
ToDo(text="Send invoices.", completed=True),
|
||||
]
|
||||
)
|
||||
|
||||
todoes = await ToDo.objects.all()
|
||||
assert len(todoes) == 3
|
||||
|
||||
# update objects
|
||||
for todo in todoes:
|
||||
todo.completed = False
|
||||
|
||||
# perform update of all objects at once
|
||||
# objects need to have pk column set, otherwise exception is raised
|
||||
await ToDo.objects.bulk_update(todoes)
|
||||
|
||||
completed = await ToDo.objects.filter(completed=False).all()
|
||||
assert len(completed) == 3
|
||||
|
||||
```
|
||||
|
||||
Since version >=0.3.6 Ormar supports unique constraints on multiple columns
|
||||
```python
|
||||
import databases
|
||||
import ormar
|
||||
import sqlalchemy
|
||||
|
||||
database = databases.Database("sqlite:///db.sqlite")
|
||||
metadata = sqlalchemy.MetaData()
|
||||
|
||||
|
||||
class Product(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "products"
|
||||
metadata = metadata
|
||||
database = database
|
||||
# define your constraints in Meta class of the model
|
||||
# it's a list that can contain multiple constraints
|
||||
constraints = [ormar.UniqueColumns("name", "company")]
|
||||
|
||||
id: ormar.Integer(primary_key=True)
|
||||
name: ormar.String(max_length=100)
|
||||
company: ormar.String(max_length=200)
|
||||
|
||||
await Product.objects.create(name="Cookies", company="Nestle")
|
||||
await Product.objects.create(name="Mars", company="Mars")
|
||||
await Product.objects.create(name="Mars", company="Nestle")
|
||||
|
||||
|
||||
# will raise error based on backend
|
||||
# (sqlite3.IntegrityError, pymysql.IntegrityError, asyncpg.exceptions.UniqueViolationError)
|
||||
await Product.objects.create(name="Mars", company="Mars")
|
||||
|
||||
```
|
||||
|
||||
Since version >=0.3.6 Ormar supports selecting subset of model columns to limit the data load.
|
||||
Warning - mandatory fields cannot be excluded as it will raise validation error, to exclude a field it has to be nullable.
|
||||
Pk column cannot be excluded - it's always auto added even if not explicitly included.
|
||||
```python
|
||||
import databases
|
||||
import pydantic
|
||||
import pytest
|
||||
import sqlalchemy
|
||||
|
||||
import ormar
|
||||
from tests.settings import DATABASE_URL
|
||||
|
||||
database = databases.Database(DATABASE_URL, force_rollback=True)
|
||||
metadata = sqlalchemy.MetaData()
|
||||
|
||||
|
||||
class Company(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "companies"
|
||||
metadata = metadata
|
||||
database = database
|
||||
|
||||
id: ormar.Integer(primary_key=True)
|
||||
name: ormar.String(max_length=100)
|
||||
founded: ormar.Integer(nullable=True)
|
||||
|
||||
|
||||
class Car(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "cars"
|
||||
metadata = metadata
|
||||
database = database
|
||||
|
||||
id: ormar.Integer(primary_key=True)
|
||||
manufacturer: ormar.ForeignKey(Company)
|
||||
name: ormar.String(max_length=100)
|
||||
year: ormar.Integer(nullable=True)
|
||||
gearbox_type: ormar.String(max_length=20, nullable=True)
|
||||
gears: ormar.Integer(nullable=True)
|
||||
aircon_type: ormar.String(max_length=20, nullable=True)
|
||||
|
||||
|
||||
|
||||
# build some sample data
|
||||
toyota = await Company.objects.create(name="Toyota", founded=1937)
|
||||
await Car.objects.create(manufacturer=toyota, name="Corolla", year=2020, gearbox_type='Manual', gears=5,
|
||||
aircon_type='Manual')
|
||||
await Car.objects.create(manufacturer=toyota, name="Yaris", year=2019, gearbox_type='Manual', gears=5,
|
||||
aircon_type='Manual')
|
||||
await Car.objects.create(manufacturer=toyota, name="Supreme", year=2020, gearbox_type='Auto', gears=6,
|
||||
aircon_type='Auto')
|
||||
|
||||
# select manufacturer but only name - to include related models use notation {model_name}__{column}
|
||||
all_cars = await Car.objects.select_related('manufacturer').fields(['id', 'name', 'company__name']).all()
|
||||
for car in all_cars:
|
||||
# excluded columns will yield None
|
||||
assert all(getattr(car, x) is None for x in ['year', 'gearbox_type', 'gears', 'aircon_type'])
|
||||
# included column on related models will be available, pk column is always included
|
||||
# even if you do not include it in fields list
|
||||
assert car.manufacturer.name == 'Toyota'
|
||||
# also in the nested related models - you cannot exclude pk - it's always auto added
|
||||
assert car.manufacturer.founded is None
|
||||
|
||||
# fields() can be called several times, building up the columns to select
|
||||
# models selected in select_related but with no columns in fields list implies all fields
|
||||
all_cars = await Car.objects.select_related('manufacturer').fields('id').fields(
|
||||
['name']).all()
|
||||
# all fiels from company model are selected
|
||||
assert all_cars[0].manufacturer.name == 'Toyota'
|
||||
assert all_cars[0].manufacturer.founded == 1937
|
||||
|
||||
# cannot exclude mandatory model columns - company__name in this example
|
||||
await Car.objects.select_related('manufacturer').fields(['id', 'name', 'company__founded']).all()
|
||||
# will raise pydantic ValidationError as company.name is required
|
||||
|
||||
```
|
||||
|
||||
|
||||
## Data types
|
||||
|
||||
#### Relation types
|
||||
|
||||
* One to many - with `ForeignKey`
|
||||
* Many to many - with `Many2Many`
|
||||
|
||||
#### Model fields types
|
||||
|
||||
Available Model Fields (with required args - optional ones in docs):
|
||||
|
||||
* `String(max_length)`
|
||||
* `Text()`
|
||||
* `Boolean()`
|
||||
* `Integer()`
|
||||
* `Float()`
|
||||
* `Date()`
|
||||
* `Time()`
|
||||
* `DateTime()`
|
||||
* `JSON()`
|
||||
* `BigInteger()`
|
||||
* `Decimal(scale, precision)`
|
||||
* `UUID()`
|
||||
* `ForeignKey(to)`
|
||||
* `Many2Many(to, through)`
|
||||
|
||||
### Available fields options
|
||||
The following keyword arguments are supported on all field types.
|
||||
|
||||
* `primary_key: bool`
|
||||
@ -506,25 +182,12 @@ All fields are required unless one of the following is set:
|
||||
* `primary key` with `autoincrement` - When a column is set to primary key and autoincrement is set on this column.
|
||||
Autoincrement is set by default on int primary keys.
|
||||
|
||||
Available Model Fields (with required args - optional ones in docs):
|
||||
* `String(max_length)`
|
||||
* `Text()`
|
||||
* `Boolean()`
|
||||
* `Integer()`
|
||||
* `Float()`
|
||||
* `Date()`
|
||||
* `Time()`
|
||||
* `DateTime()`
|
||||
* `JSON()`
|
||||
* `BigInteger()`
|
||||
* `Decimal(scale, precision)`
|
||||
* `UUID()`
|
||||
* `ForeignKey(to)`
|
||||
* `Many2Many(to, through)`
|
||||
|
||||
|
||||
[sqlalchemy-core]: https://docs.sqlalchemy.org/en/latest/core/
|
||||
[databases]: https://github.com/encode/databases
|
||||
[pydantic]: https://pydantic-docs.helpmanual.io/
|
||||
[encode/orm]: https://github.com/encode/orm/
|
||||
[alembic]: https://alembic.sqlalchemy.org/en/latest/
|
||||
[fastapi]: https://fastapi.tiangolo.com/
|
||||
[fastapi]: https://fastapi.tiangolo.com/
|
||||
[documentation]: https://collerek.github.io/ormar/
|
||||
Reference in New Issue
Block a user