added mypy checks and some typehint changes to conform

This commit is contained in:
collerek
2020-09-29 14:05:08 +02:00
parent 6d56ea5e30
commit 3caa87057e
23 changed files with 274 additions and 202 deletions

View File

@ -28,15 +28,19 @@ class ModelMeta:
database: databases.Database
columns: List[sqlalchemy.Column]
pkname: str
model_fields: Dict[str, Union[BaseField, ForeignKey]]
model_fields: Dict[
str, Union[Type[BaseField], Type[ForeignKeyField], Type[ManyToManyField]]
]
alias_manager: AliasManager
def register_relation_on_build(table_name: str, field: ForeignKey) -> None:
def register_relation_on_build(table_name: str, field: Type[ForeignKeyField]) -> None:
alias_manager.add_relation_type(field.to.Meta.tablename, table_name)
def register_many_to_many_relation_on_build(table_name: str, field: ManyToMany) -> None:
def register_many_to_many_relation_on_build(
table_name: str, field: Type[ManyToManyField]
) -> None:
alias_manager.add_relation_type(field.through.Meta.tablename, table_name)
alias_manager.add_relation_type(
field.through.Meta.tablename, field.to.Meta.tablename
@ -106,7 +110,7 @@ def create_pydantic_field(
) -> None:
model_field.through.__fields__[field_name] = ModelField(
name=field_name,
type_=Optional[model],
type_=model,
model_config=model.__config__,
required=False,
class_validators={},
@ -130,7 +134,7 @@ def create_and_append_m2m_fk(
def check_pk_column_validity(
field_name: str, field: BaseField, pkname: str
field_name: str, field: BaseField, pkname: Optional[str]
) -> Optional[str]:
if pkname is not None:
raise ModelDefinitionError("Only one primary key column is allowed.")
@ -218,6 +222,7 @@ def populate_meta_tablename_columns_and_pk(
) -> Type["Model"]:
tablename = name.lower() + "s"
new_model.Meta.tablename = new_model.Meta.tablename or tablename
pkname: Optional[str]
if hasattr(new_model.Meta, "columns"):
columns = new_model.Meta.table.columns
@ -226,12 +231,13 @@ def populate_meta_tablename_columns_and_pk(
pkname, columns = sqlalchemy_columns_from_model_fields(
new_model.Meta.model_fields, new_model.Meta.tablename
)
if pkname is None:
raise ModelDefinitionError("Table has to have a primary key.")
new_model.Meta.columns = columns
new_model.Meta.pkname = pkname
if not new_model.Meta.pkname:
raise ModelDefinitionError("Table has to have a primary key.")
return new_model
@ -253,8 +259,8 @@ def get_pydantic_base_orm_config() -> Type[BaseConfig]:
return Config
def check_if_field_has_choices(field: BaseField) -> bool:
return hasattr(field, "choices") and field.choices
def check_if_field_has_choices(field: Type[BaseField]) -> bool:
return hasattr(field, "choices") and bool(field.choices)
def model_initialized_and_has_model_fields(model: Type["Model"]) -> bool:
@ -287,7 +293,7 @@ def populate_choices_validators( # noqa CCR001
class ModelMetaclass(pydantic.main.ModelMetaclass):
def __new__(mcs: type, name: str, bases: Any, attrs: dict) -> type:
def __new__(mcs: "ModelMetaclass", name: str, bases: Any, attrs: dict) -> "ModelMetaclass": # type: ignore
attrs["Config"] = get_pydantic_base_orm_config()
attrs["__name__"] = name
attrs = extract_annotations_and_default_vals(attrs, bases)
@ -306,7 +312,7 @@ class ModelMetaclass(pydantic.main.ModelMetaclass):
field_name = new_model.Meta.pkname
field = Integer(name=field_name, primary_key=True)
attrs["__annotations__"][field_name] = field
populate_default_pydantic_field_value(field, field_name, attrs)
populate_default_pydantic_field_value(field, field_name, attrs) # type: ignore
new_model = super().__new__( # type: ignore
mcs, name, bases, attrs

View File

@ -1,5 +1,5 @@
import itertools
from typing import Any, List, Tuple, Union
from typing import Any, List, Dict, Optional
import sqlalchemy
from databases.backends.postgres import Record
@ -9,8 +9,8 @@ from ormar.fields.many_to_many import ManyToManyField
from ormar.models import NewBaseModel # noqa I100
def group_related_list(list_: List) -> dict:
test_dict = dict()
def group_related_list(list_: List) -> Dict:
test_dict: Dict[str, Any] = dict()
grouped = itertools.groupby(list_, key=lambda x: x.split("__")[0])
for key, group in grouped:
group_list = list(group)
@ -29,14 +29,14 @@ class Model(NewBaseModel):
@classmethod
def from_row(
cls,
row: sqlalchemy.engine.ResultProxy,
select_related: List = None,
related_models: Any = None,
previous_table: str = None,
) -> Union["Model", Tuple["Model", dict]]:
cls,
row: sqlalchemy.engine.ResultProxy,
select_related: List = None,
related_models: Any = None,
previous_table: str = None,
) -> Optional["Model"]:
item = {}
item: Dict[str, Any] = {}
select_related = select_related or []
related_models = related_models or []
if select_related:
@ -44,17 +44,20 @@ class Model(NewBaseModel):
# breakpoint()
if (
previous_table
and previous_table in cls.Meta.model_fields
and issubclass(cls.Meta.model_fields[previous_table], ManyToManyField)
previous_table
and previous_table in cls.Meta.model_fields
and issubclass(cls.Meta.model_fields[previous_table], ManyToManyField)
):
previous_table = cls.Meta.model_fields[
previous_table
].through.Meta.tablename
table_prefix = cls.Meta.alias_manager.resolve_relation_join(
previous_table, cls.Meta.table.name
)
if previous_table:
table_prefix = cls.Meta.alias_manager.resolve_relation_join(
previous_table, cls.Meta.table.name
)
else:
table_prefix = ''
previous_table = cls.Meta.table.name
item = cls.populate_nested_models_from_row(
@ -67,11 +70,11 @@ class Model(NewBaseModel):
@classmethod
def populate_nested_models_from_row(
cls,
item: dict,
row: sqlalchemy.engine.ResultProxy,
related_models: Any,
previous_table: sqlalchemy.Table,
cls,
item: dict,
row: sqlalchemy.engine.ResultProxy,
related_models: Any,
previous_table: sqlalchemy.Table,
) -> dict:
for related in related_models:
if isinstance(related_models, dict) and related_models[related]:
@ -90,7 +93,7 @@ class Model(NewBaseModel):
@classmethod
def extract_prefixed_table_columns( # noqa CCR001
cls, item: dict, row: sqlalchemy.engine.result.ResultProxy, table_prefix: str
cls, item: dict, row: sqlalchemy.engine.result.ResultProxy, table_prefix: str
) -> dict:
for column in cls.Meta.table.columns:
if column.name not in item:
@ -106,7 +109,7 @@ class Model(NewBaseModel):
async def save(self) -> "Model":
self_fields = self._extract_model_db_fields()
if not self.pk and self.Meta.model_fields.get(self.Meta.pkname).autoincrement:
if not self.pk and self.Meta.model_fields[self.Meta.pkname].autoincrement:
self_fields.pop(self.Meta.pkname, None)
self_fields = self.objects._populate_default_values(self_fields)
expr = self.Meta.table.insert()
@ -138,5 +141,7 @@ class Model(NewBaseModel):
async def load(self) -> "Model":
expr = self.Meta.table.select().where(self.pk_column == self.pk)
row = await self.Meta.database.fetch_one(expr)
if not row: # pragma nocover
raise ValueError('Instance was deleted from database and cannot be refreshed')
self.from_dict(dict(row))
return self

View File

@ -1,5 +1,5 @@
import inspect
from typing import List, Optional, Set, TYPE_CHECKING, Type, TypeVar, Union
from typing import List, Optional, Set, TYPE_CHECKING, Type, TypeVar, Union, Dict
import ormar
from ormar.exceptions import RelationshipInstanceError
@ -9,6 +9,7 @@ from ormar.models.metaclass import ModelMeta
if TYPE_CHECKING: # pragma no cover
from ormar import Model
from ormar.models import NewBaseModel
Field = TypeVar("Field", bound=BaseField)
@ -17,10 +18,10 @@ class ModelTableProxy:
if TYPE_CHECKING: # pragma no cover
Meta: ModelMeta
def dict(): # noqa A003
def dict(self): # noqa A003
raise NotImplementedError # pragma no cover
def _extract_own_model_fields(self) -> dict:
def _extract_own_model_fields(self) -> Dict:
related_names = self.extract_related_names()
self_fields = {k: v for k, v in self.dict().items() if k not in related_names}
return self_fields
@ -34,7 +35,7 @@ class ModelTableProxy:
return self_fields
@classmethod
def substitute_models_with_pks(cls, model_dict: dict) -> dict:
def substitute_models_with_pks(cls, model_dict: Dict) -> Dict:
for field in cls.extract_related_names():
field_value = model_dict.get(field, None)
if field_value is not None:
@ -80,7 +81,7 @@ class ModelTableProxy:
related_names.add(name)
return related_names
def _extract_model_db_fields(self) -> dict:
def _extract_model_db_fields(self) -> Dict:
self_fields = self._extract_own_model_fields()
self_fields = {
k: v for k, v in self_fields.items() if k in self.Meta.table.columns
@ -92,7 +93,9 @@ class ModelTableProxy:
return self_fields
@staticmethod
def resolve_relation_name(item: "Model", related: "Model") -> Optional[str]:
def resolve_relation_name(
item: Union["NewBaseModel", Type["NewBaseModel"]], related: Union["NewBaseModel", Type["NewBaseModel"]]
) -> str:
for name, field in item.Meta.model_fields.items():
if issubclass(field, ForeignKeyField):
# fastapi is creating clones of response model
@ -100,11 +103,14 @@ class ModelTableProxy:
# so we need to compare Meta too as this one is copied as is
if field.to == related.__class__ or field.to.Meta == related.Meta:
return name
raise ValueError(
f"No relation between {item.get_name()} and {related.get_name()}"
) # pragma nocover
@staticmethod
def resolve_relation_field(
item: Union["Model", Type["Model"]], related: Union["Model", Type["Model"]]
) -> Type[Field]:
) -> Union[Type[BaseField], Type[ForeignKeyField]]:
name = ModelTableProxy.resolve_relation_name(item, related)
to_field = item.Meta.model_fields.get(name)
if not to_field: # pragma no cover
@ -116,7 +122,7 @@ class ModelTableProxy:
@classmethod
def merge_instances_list(cls, result_rows: List["Model"]) -> List["Model"]:
merged_rows = []
merged_rows: List["Model"] = []
for index, model in enumerate(result_rows):
if index > 0 and model.pk == merged_rows[-1].pk:
merged_rows[-1] = cls.merge_two_instances(model, merged_rows[-1])

View File

@ -3,13 +3,13 @@ import uuid
from typing import (
AbstractSet,
Any,
Callable,
Dict,
List,
Mapping,
Optional,
TYPE_CHECKING,
Type,
TypeVar,
Union,
)
@ -39,7 +39,7 @@ class NewBaseModel(pydantic.BaseModel, ModelTableProxy, metaclass=ModelMetaclass
__slots__ = ("_orm_id", "_orm_saved", "_orm")
if TYPE_CHECKING: # pragma no cover
__model_fields__: Dict[str, TypeVar[BaseField]]
__model_fields__: Dict[str, Type[BaseField]]
__table__: sqlalchemy.Table
__fields__: Dict[str, pydantic.fields.ModelField]
__pydantic_model__: Type[BaseModel]
@ -84,7 +84,7 @@ class NewBaseModel(pydantic.BaseModel, ModelTableProxy, metaclass=ModelMetaclass
for k, v in kwargs.items()
}
values, fields_set, validation_error = pydantic.validate_model(self, kwargs)
values, fields_set, validation_error = pydantic.validate_model(self, kwargs) # type: ignore
if validation_error and not pk_only:
raise validation_error
@ -134,13 +134,14 @@ class NewBaseModel(pydantic.BaseModel, ModelTableProxy, metaclass=ModelMetaclass
) -> Optional[Union["Model", List["Model"]]]:
if item in self._orm:
return self._orm.get(item)
return None
def __eq__(self, other: "Model") -> bool:
def __eq__(self, other: object) -> bool:
if isinstance(other, NewBaseModel):
return self.__same__(other)
return super().__eq__(other) # pragma no cover
def __same__(self, other: "Model") -> bool:
def __same__(self, other: "NewBaseModel") -> bool:
return (
self._orm_id == other._orm_id
or self.dict() == other.dict()
@ -205,19 +206,19 @@ class NewBaseModel(pydantic.BaseModel, ModelTableProxy, metaclass=ModelMetaclass
dict_instance[field] = None
return dict_instance
def from_dict(self, value_dict: Dict) -> "Model":
def from_dict(self, value_dict: Dict) -> "NewBaseModel":
for key, value in value_dict.items():
setattr(self, key, value)
return self
def _convert_json(self, column_name: str, value: Any, op: str) -> Union[str, dict]:
def _convert_json(self, column_name: str, value: Any, op: str) -> Union[str, Dict]:
if not self._is_conversion_to_json_needed(column_name):
return value
condition = (
isinstance(value, str) if op == "loads" else not isinstance(value, str)
)
operand = json.loads if op == "loads" else json.dumps
operand: Callable[[Any], Any] = json.loads if op == "loads" else json.dumps
if condition:
try:
@ -227,4 +228,4 @@ class NewBaseModel(pydantic.BaseModel, ModelTableProxy, metaclass=ModelMetaclass
return value
def _is_conversion_to_json_needed(self, column_name: str) -> bool:
return self.Meta.model_fields.get(column_name).__type__ == pydantic.Json
return self.Meta.model_fields[column_name].__type__ == pydantic.Json