WIP - Pydantic v2 support (#1238)
* WIP * WIP - make test_model_definition tests pass * WIP - make test_model_methods pass * WIP - make whole test suit at least run - failing 49/443 tests * WIP fix part of the getting pydantic tests as types of fields are now kept in core schema and not on fieldsinfo * WIP fix validation in update by creating individual fields validators, failing 36/443 * WIP fix __pydantic_extra__ in intializing model, fix test related to pydantic config checks, failing 32/442 * WIP - fix enum schema in model_json_schema, failing 31/442 * WIP - fix copying through model, fix setting pydantic fields on through, fix default config and inheriting from it, failing 26/442 * WIP fix tests checking pydantic schema, fix excluding parent fields, failing 21/442 * WIP some missed files * WIP - fix validators inheritance and fix validators in generated pydantic, failing 17/442 * WIP - fix through models setting - only on reverse side of relation, but always on reverse side, failing 15/442 * WIP - fix through models setting - only on reverse side of relation, but always on reverse side, failing 15/442 * WIP - working on proper populating __dict__ for relations for new schema dumping, some work on openapi docs, failing 13/442 * WIP - remove property fields as pydantic has now computed_field on its own, failing 9/442 * WIP - fixes in docs, failing 8/442 * WIP - fix tests for largebinary schema, wrapped bytes fields fail in pydantic, will be fixed in pydantic-core, remaining is circural schema for related models, failing 6/442 * WIP - fix to pk only models in schemas * Getting test suites to pass (#1249) * wip, fixing tests * iteration, fixing some more tests * iteration, fixing some more tests * adhere to comments * adhere to comments * remove unnecessary dict call, re-add getattribute for testing * todo for reverse relationship * adhere to comments, remove prints * solve circular refs * all tests pass 🎉 * remove 3.7 from tests * add lint and type check jobs * reforat with ruff, fix jobs * rename jobs * fix imports * fix evaluate in py3.8 * partially fix coverage * fix coverage, add more tests * fix test ids * fix test ids * fix lint, fix docs, make docs fully working scripts, add test docs job * fix pyproject * pin py ver in test docs * change dir in test docs * fix pydantic warning hack * rm poetry call in test_docs * switch to pathlib in test docs * remove coverage req test docs * fix type check tests, fix part of types * fix/skip next part of types * fix next part of types * fix next part of types * fix coverage * fix coverage * fix type (bit dirty 🤷) * fix some code smells * change pre-commit * tweak workflows * remove no root from tests * switch to full python path by passing sys.executable * some small refactor in new base model, one sample test, change makefile * small refactors to reduce complexity of methods * temp add tests for prs against pydantic_v2 * remove all references to __fields__ * remove all references to construct, deprecate the method and update model_construct to be in line with pydantic * deprecate dict and add model_dump, todo switch to model_dict in calls * fix tests * change to union * change to union * change to model_dump and model_dump_json from dict and json deprecated methods, deprecate them in ormar too * finish switching dict() -> model_dump() * finish switching json() -> model_dump_json() * remove fully pydantic_only * switch to extra for payment card, change missed json calls * fix coverage - no more warnings internal * fix coverage - no more warnings internal - part 2 * split model_construct into own and pydantic parts * split determine pydantic field type * change to new field validators * fix benchmarks, add codspeed instead of pytest-benchmark, add action and gh workflow * restore pytest-benchmark * remove codspeed * pin pydantic version, restore codspeed * change on push to pydantic_v2 to trigger first one * Use lifespan function instead of event (#1259) * check return types * fix imports order, set warnings=False on json that passes the dict, fix unnecessary loop in one of the test * remove references to model's meta as it's now ormar config, rename related methods too * filter out pydantic serializer warnings * remove choices leftovers * remove leftovers after property_fields, keep only enough to exclude them in initialization * add migration guide * fix meta references * downgrade databases for now * Change line numbers in documentation (#1265) * proofread and fix the docs, part 1 * proofread and fix the docs for models * proofread and fix the docs for fields * proofread and fix the docs for relations * proofread and fix rest of the docs, add release notes for 0.20 * create tables in new docs src * cleanup old deps, uncomment docs publish on tag * fix import reorder --------- Co-authored-by: TouwaStar <30479449+TouwaStar@users.noreply.github.com> Co-authored-by: Goran Mekić <meka@tilda.center>
This commit is contained in:
@ -24,52 +24,7 @@ With `fields()` you can select subset of model columns to limit the data load.
|
||||
Given a sample data like following:
|
||||
|
||||
```python
|
||||
import databases
|
||||
import sqlalchemy
|
||||
|
||||
import ormar
|
||||
from tests.settings import DATABASE_URL
|
||||
|
||||
database = databases.Database(DATABASE_URL, force_rollback=True)
|
||||
metadata = sqlalchemy.MetaData()
|
||||
|
||||
|
||||
class Company(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "companies"
|
||||
metadata = metadata
|
||||
database = database
|
||||
|
||||
id: int = ormar.Integer(primary_key=True)
|
||||
name: str = ormar.String(max_length=100)
|
||||
founded: int = ormar.Integer(nullable=True)
|
||||
|
||||
|
||||
class Car(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "cars"
|
||||
metadata = metadata
|
||||
database = database
|
||||
|
||||
id: int = ormar.Integer(primary_key=True)
|
||||
manufacturer = ormar.ForeignKey(Company)
|
||||
name: str = ormar.String(max_length=100)
|
||||
year: int = ormar.Integer(nullable=True)
|
||||
gearbox_type: str = ormar.String(max_length=20, nullable=True)
|
||||
gears: int = ormar.Integer(nullable=True)
|
||||
aircon_type: str = ormar.String(max_length=20, nullable=True)
|
||||
|
||||
|
||||
# build some sample data
|
||||
toyota = await Company.objects.create(name="Toyota", founded=1937)
|
||||
await Car.objects.create(manufacturer=toyota, name="Corolla", year=2020, gearbox_type='Manual', gears=5,
|
||||
aircon_type='Manual')
|
||||
await Car.objects.create(manufacturer=toyota, name="Yaris", year=2019, gearbox_type='Manual', gears=5,
|
||||
aircon_type='Manual')
|
||||
await Car.objects.create(manufacturer=toyota, name="Supreme", year=2020, gearbox_type='Auto', gears=6,
|
||||
aircon_type='Auto')
|
||||
|
||||
|
||||
--8<-- "../docs_src/select_columns/docs001.py"
|
||||
```
|
||||
|
||||
You can select specified fields by passing a `str, List[str], Set[str] or dict` with
|
||||
@ -78,8 +33,13 @@ nested definition.
|
||||
To include related models use
|
||||
notation `{related_name}__{column}[__{optional_next} etc.]`.
|
||||
|
||||
```python hl_lines="1"
|
||||
all_cars = await Car.objects.select_related('manufacturer').fields(['id', 'name', 'manufacturer__name']).all()
|
||||
```python hl_lines="1-6"
|
||||
all_cars = await (
|
||||
Car.objects
|
||||
.select_related('manufacturer')
|
||||
.fields(['id', 'name', 'manufacturer__name'])
|
||||
.all()
|
||||
)
|
||||
for car in all_cars:
|
||||
# excluded columns will yield None
|
||||
assert all(getattr(car, x) is None for x in ['year', 'gearbox_type', 'gears', 'aircon_type'])
|
||||
@ -97,9 +57,14 @@ for those models in fields
|
||||
|
||||
- implies a list of all fields for those nested models.
|
||||
|
||||
```python hl_lines="1"
|
||||
all_cars = await Car.objects.select_related('manufacturer').fields('id').fields(
|
||||
['name']).all()
|
||||
```python hl_lines="1-7"
|
||||
all_cars = await (
|
||||
Car.objects
|
||||
.select_related('manufacturer')
|
||||
.fields('id')
|
||||
.fields(['name'])
|
||||
.all()
|
||||
)
|
||||
# all fields from company model are selected
|
||||
assert all_cars[0].manufacturer.name == 'Toyota'
|
||||
assert all_cars[0].manufacturer.founded == 1937
|
||||
@ -115,8 +80,12 @@ assert all_cars[0].manufacturer.founded == 1937
|
||||
You cannot exclude mandatory model columns - `manufacturer__name` in this example.
|
||||
|
||||
```python
|
||||
await Car.objects.select_related('manufacturer').fields(
|
||||
['id', 'name', 'manufacturer__founded']).all()
|
||||
await (
|
||||
Car.objects
|
||||
.select_related('manufacturer')
|
||||
.fields(['id', 'name', 'manufacturer__founded'])
|
||||
.all()
|
||||
)
|
||||
# will raise pydantic ValidationError as company.name is required
|
||||
```
|
||||
|
||||
@ -138,38 +107,71 @@ Below you can see examples that are equivalent:
|
||||
|
||||
```python
|
||||
# 1. like in example above
|
||||
await Car.objects.select_related('manufacturer').fields(['id', 'name', 'manufacturer__name']).all()
|
||||
await (
|
||||
Car.objects
|
||||
.select_related('manufacturer')
|
||||
.fields(['id', 'name', 'manufacturer__name'])
|
||||
.all()
|
||||
)
|
||||
|
||||
# 2. to mark a field as required use ellipsis
|
||||
await Car.objects.select_related('manufacturer').fields({'id': ...,
|
||||
'name': ...,
|
||||
'manufacturer': {
|
||||
'name': ...}
|
||||
}).all()
|
||||
await (
|
||||
Car.objects
|
||||
.select_related('manufacturer')
|
||||
.fields({'id': ...,
|
||||
'name': ...,
|
||||
'manufacturer': {
|
||||
'name': ...
|
||||
}
|
||||
})
|
||||
.all()
|
||||
)
|
||||
|
||||
# 3. to include whole nested model use ellipsis
|
||||
await Car.objects.select_related('manufacturer').fields({'id': ...,
|
||||
'name': ...,
|
||||
'manufacturer': ...
|
||||
}).all()
|
||||
await (
|
||||
Car.objects
|
||||
.select_related('manufacturer')
|
||||
.fields({'id': ...,
|
||||
'name': ...,
|
||||
'manufacturer': ...
|
||||
})
|
||||
.all()
|
||||
)
|
||||
|
||||
# 4. to specify fields at last nesting level you can also use set - equivalent to 2. above
|
||||
await Car.objects.select_related('manufacturer').fields({'id': ...,
|
||||
'name': ...,
|
||||
'manufacturer': {'name'}
|
||||
}).all()
|
||||
# 4. to specify fields at last nesting level
|
||||
# you can also use set - equivalent to 2. above
|
||||
await (
|
||||
Car.objects
|
||||
.select_related('manufacturer')
|
||||
.fields({'id': ...,
|
||||
'name': ...,
|
||||
'manufacturer': {'name'}
|
||||
})
|
||||
.all()
|
||||
)
|
||||
|
||||
# 5. of course set can have multiple fields
|
||||
await Car.objects.select_related('manufacturer').fields({'id': ...,
|
||||
'name': ...,
|
||||
'manufacturer': {'name', 'founded'}
|
||||
}).all()
|
||||
await (
|
||||
Car.objects
|
||||
.select_related('manufacturer')
|
||||
.fields({'id': ...,
|
||||
'name': ...,
|
||||
'manufacturer': {'name', 'founded'}
|
||||
})
|
||||
.all()
|
||||
)
|
||||
|
||||
# 6. you can include all nested fields but it will be equivalent of 3. above which is shorter
|
||||
await Car.objects.select_related('manufacturer').fields({'id': ...,
|
||||
'name': ...,
|
||||
'manufacturer': {'id', 'name', 'founded'}
|
||||
}).all()
|
||||
# 6. you can include all nested fields,
|
||||
# but it will be equivalent of 3. above which is shorter
|
||||
await (
|
||||
Car.objects
|
||||
.select_related('manufacturer')
|
||||
.fields({'id': ...,
|
||||
'name': ...,
|
||||
'manufacturer': {'id', 'name', 'founded'}
|
||||
})
|
||||
.all()
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
@ -201,74 +203,65 @@ exclude fields from whole hierarchy.
|
||||
|
||||
Below you can find few simple examples:
|
||||
|
||||
```python hl_lines="47 48 60 61 67"
|
||||
import databases
|
||||
import sqlalchemy
|
||||
```python
|
||||
--8<-- "../docs_src/select_columns/docs001.py"
|
||||
```
|
||||
|
||||
import ormar
|
||||
from tests.settings import DATABASE_URL
|
||||
|
||||
database = databases.Database(DATABASE_URL, force_rollback=True)
|
||||
metadata = sqlalchemy.MetaData()
|
||||
|
||||
|
||||
class Company(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "companies"
|
||||
metadata = metadata
|
||||
database = database
|
||||
|
||||
id: int = ormar.Integer(primary_key=True)
|
||||
name: str = ormar.String(max_length=100)
|
||||
founded: int = ormar.Integer(nullable=True)
|
||||
|
||||
|
||||
class Car(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "cars"
|
||||
metadata = metadata
|
||||
database = database
|
||||
|
||||
id: int = ormar.Integer(primary_key=True)
|
||||
manufacturer = ormar.ForeignKey(Company)
|
||||
name: str = ormar.String(max_length=100)
|
||||
year: int = ormar.Integer(nullable=True)
|
||||
gearbox_type: str = ormar.String(max_length=20, nullable=True)
|
||||
gears: int = ormar.Integer(nullable=True)
|
||||
aircon_type: str = ormar.String(max_length=20, nullable=True)
|
||||
|
||||
|
||||
# build some sample data
|
||||
toyota = await Company.objects.create(name="Toyota", founded=1937)
|
||||
await Car.objects.create(manufacturer=toyota, name="Corolla", year=2020, gearbox_type='Manual', gears=5,
|
||||
aircon_type='Manual')
|
||||
await Car.objects.create(manufacturer=toyota, name="Yaris", year=2019, gearbox_type='Manual', gears=5,
|
||||
aircon_type='Manual')
|
||||
await Car.objects.create(manufacturer=toyota, name="Supreme", year=2020, gearbox_type='Auto', gears=6,
|
||||
aircon_type='Auto')
|
||||
|
||||
# select manufacturer but only name - to include related models use notation {model_name}__{column}
|
||||
all_cars = await Car.objects.select_related('manufacturer').exclude_fields(
|
||||
['year', 'gearbox_type', 'gears', 'aircon_type', 'company__founded']).all()
|
||||
```python
|
||||
# select manufacturer but only name,
|
||||
# to include related models use notation {model_name}__{column}
|
||||
all_cars = await (
|
||||
Car.objects
|
||||
.select_related('manufacturer')
|
||||
.exclude_fields([
|
||||
'year',
|
||||
'gearbox_type',
|
||||
'gears',
|
||||
'aircon_type',
|
||||
'company__founded'
|
||||
])
|
||||
.all()
|
||||
)
|
||||
for car in all_cars:
|
||||
# excluded columns will yield None
|
||||
assert all(getattr(car, x) is None for x in ['year', 'gearbox_type', 'gears', 'aircon_type'])
|
||||
# included column on related models will be available, pk column is always included
|
||||
assert all(getattr(car, x) is None
|
||||
for x in [
|
||||
'year',
|
||||
'gearbox_type',
|
||||
'gears',
|
||||
'aircon_type'
|
||||
])
|
||||
# included column on related models will be available,
|
||||
# pk column is always included
|
||||
# even if you do not include it in fields list
|
||||
assert car.manufacturer.name == 'Toyota'
|
||||
# also in the nested related models - you cannot exclude pk - it's always auto added
|
||||
# also in the nested related models,
|
||||
# you cannot exclude pk - it's always auto added
|
||||
assert car.manufacturer.founded is None
|
||||
|
||||
# fields() can be called several times, building up the columns to select
|
||||
# models selected in select_related but with no columns in fields list implies all fields
|
||||
all_cars = await Car.objects.select_related('manufacturer').exclude_fields('year').exclude_fields(
|
||||
['gear', 'gearbox_type']).all()
|
||||
# fields() can be called several times,
|
||||
# building up the columns to select
|
||||
# models included in select_related
|
||||
# but with no columns in fields list implies all fields
|
||||
all_cars = await (
|
||||
Car.objects
|
||||
.select_related('manufacturer')
|
||||
.exclude_fields('year')
|
||||
.exclude_fields(['gear', 'gearbox_type'])
|
||||
.all()
|
||||
)
|
||||
# all fields from company model are selected
|
||||
assert all_cars[0].manufacturer.name == 'Toyota'
|
||||
assert all_cars[0].manufacturer.founded == 1937
|
||||
|
||||
# cannot exclude mandatory model columns - company__name in this example - note usage of dict/set this time
|
||||
await Car.objects.select_related('manufacturer').exclude_fields([{'company': {'name'}}]).all()
|
||||
# cannot exclude mandatory model columns,
|
||||
# company__name in this example - note usage of dict/set this time
|
||||
await (
|
||||
Car.objects
|
||||
.select_related('manufacturer')
|
||||
.exclude_fields([{'company': {'name'}}])
|
||||
.all()
|
||||
)
|
||||
# will raise pydantic ValidationError as company.name is required
|
||||
|
||||
```
|
||||
|
||||
Reference in New Issue
Block a user