update docs, build site folder
This commit is contained in:
@ -0,0 +1,62 @@
|
||||
All contributions to *ormar* are welcomed!
|
||||
|
||||
## Issues
|
||||
|
||||
To make it as simple as possible for us to help you, please include the following:
|
||||
|
||||
* OS
|
||||
* python version
|
||||
* ormar version
|
||||
* database backend (mysql, sqlite or postgresql)
|
||||
|
||||
Please try to always include the above unless you're unable to install *ormar* or **know** it's not relevant
|
||||
to your question or feature request.
|
||||
|
||||
## Pull Requests
|
||||
|
||||
It should be quite straight forward to get started and create a Pull Request.
|
||||
|
||||
!!! note
|
||||
Unless your change is trivial (typo, docs tweak etc.), please create an issue to discuss the change before
|
||||
creating a pull request.
|
||||
|
||||
To make contributing as easy and fast as possible, you'll want to run tests and linting locally.
|
||||
|
||||
You'll need to have **python 3.6**, **3.7**, or **3.8**, **virtualenv**, and **git** installed.
|
||||
|
||||
```bash
|
||||
# 1. clone your fork and cd into the repo directory
|
||||
git clone git@github.com:<your username>/ormar.git
|
||||
cd ormar
|
||||
|
||||
# 2. Set up a virtualenv for running tests
|
||||
virtualenv -p `which python3.7` env
|
||||
source env/bin/activate
|
||||
# (or however you prefer to setup a python environment, 3.6 will work too)
|
||||
|
||||
# 3. Install ormar, dependencies and test dependencies
|
||||
pip install -r requirements.txt
|
||||
|
||||
# 4. Checkout a new branch and make your changes
|
||||
git checkout -b my-new-feature-branch
|
||||
# make your changes...
|
||||
|
||||
# 5. Formatting and linting
|
||||
# ormar uses black for formatting, flake8 for linting and mypy for type hints check
|
||||
# run all of the following as all those calls will be run on travis after every push
|
||||
black ormar
|
||||
flake8 ormar
|
||||
mypy --config-file mypy.ini ormar
|
||||
|
||||
# 6. Run tests
|
||||
# on localhost all tests are run against sglite backend
|
||||
# rest of the backends will be checked after push
|
||||
pytest -svv --cov=ormar --cov=tests --cov-fail-under=100 --cov-report=term-missing
|
||||
|
||||
# 7. Build documentation
|
||||
mkdocs build
|
||||
# if you have changed the documentation make sure it builds successfully
|
||||
# you can also use `mkdocs serve` to serve the documentation at localhost:8000
|
||||
|
||||
# ... commit, push, and create your pull request
|
||||
```
|
||||
|
||||
126
docs/fastapi.md
126
docs/fastapi.md
@ -0,0 +1,126 @@
|
||||
|
||||
The use of ormar with fastapi is quite simple.
|
||||
|
||||
Apart from connecting to databases at startup everything else
|
||||
you need to do is substitute pydantic models with ormar models.
|
||||
|
||||
Here you can find a very simple sample application code.
|
||||
|
||||
```python
|
||||
from typing import List
|
||||
|
||||
import databases
|
||||
import pytest
|
||||
import sqlalchemy
|
||||
from fastapi import FastAPI
|
||||
from starlette.testclient import TestClient
|
||||
|
||||
import ormar
|
||||
from tests.settings import DATABASE_URL
|
||||
|
||||
app = FastAPI()
|
||||
metadata = sqlalchemy.MetaData()
|
||||
database = databases.Database(DATABASE_URL, force_rollback=True)
|
||||
app.state.database = database
|
||||
|
||||
# define startup and shutdown events
|
||||
@app.on_event("startup")
|
||||
async def startup() -> None:
|
||||
database_ = app.state.database
|
||||
if not database_.is_connected:
|
||||
await database_.connect()
|
||||
|
||||
|
||||
@app.on_event("shutdown")
|
||||
async def shutdown() -> None:
|
||||
database_ = app.state.database
|
||||
if database_.is_connected:
|
||||
await database_.disconnect()
|
||||
|
||||
# define ormar models
|
||||
class Category(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "categories"
|
||||
metadata = metadata
|
||||
database = database
|
||||
|
||||
id: ormar.Integer(primary_key=True)
|
||||
name: ormar.String(max_length=100)
|
||||
|
||||
|
||||
class Item(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "items"
|
||||
metadata = metadata
|
||||
database = database
|
||||
|
||||
id: ormar.Integer(primary_key=True)
|
||||
name: ormar.String(max_length=100)
|
||||
category: ormar.ForeignKey(Category, nullable=True)
|
||||
|
||||
# define endpoints in fastapi
|
||||
@app.get("/items/", response_model=List[Item])
|
||||
async def get_items():
|
||||
items = await Item.objects.select_related("category").all()
|
||||
# not that you can return a model directly - fastapi will json-ize it
|
||||
return items
|
||||
|
||||
|
||||
@app.post("/items/", response_model=Item)
|
||||
async def create_item(item: Item):
|
||||
# note how ormar methods like save() are available streight out of the box
|
||||
await item.save()
|
||||
return item
|
||||
|
||||
|
||||
@app.post("/categories/", response_model=Category)
|
||||
async def create_category(category: Category):
|
||||
await category.save()
|
||||
return category
|
||||
|
||||
|
||||
@app.put("/items/{item_id}")
|
||||
async def get_item(item_id: int, item: Item):
|
||||
# you can work both with item_id or item
|
||||
item_db = await Item.objects.get(pk=item_id)
|
||||
return await item_db.update(**item.dict())
|
||||
|
||||
|
||||
@app.delete("/items/{item_id}")
|
||||
async def delete_item(item_id: int, item: Item):
|
||||
item_db = await Item.objects.get(pk=item_id)
|
||||
return {"deleted_rows": await item_db.delete()}
|
||||
|
||||
# here is a sample test to check the working of the ormar with fastapi
|
||||
def test_all_endpoints():
|
||||
# note that TestClient is only sync, don't use asyns here
|
||||
client = TestClient(app)
|
||||
# note that you need to connect to database manually
|
||||
# or use client as contextmanager
|
||||
with client as client:
|
||||
response = client.post("/categories/", json={"name": "test cat"})
|
||||
category = response.json()
|
||||
response = client.post(
|
||||
"/items/", json={"name": "test", "id": 1, "category": category}
|
||||
)
|
||||
item = Item(**response.json())
|
||||
assert item.pk is not None
|
||||
|
||||
response = client.get("/items/")
|
||||
items = [Item(**item) for item in response.json()]
|
||||
assert items[0] == item
|
||||
|
||||
item.name = "New name"
|
||||
response = client.put(f"/items/{item.pk}", json=item.dict())
|
||||
assert response.json() == item.dict()
|
||||
|
||||
response = client.get("/items/")
|
||||
items = [Item(**item) for item in response.json()]
|
||||
assert items[0].name == "New name"
|
||||
|
||||
response = client.delete(f"/items/{item.pk}", json=item.dict())
|
||||
assert response.json().get("deleted_rows", "__UNDEFINED__") != "__UNDEFINED__"
|
||||
response = client.get("/items/")
|
||||
items = response.json()
|
||||
assert len(items) == 0
|
||||
```
|
||||
441
docs/index.md
441
docs/index.md
@ -1,4 +1,4 @@
|
||||
# ORMar
|
||||
# ormar
|
||||
<p>
|
||||
<a href="https://pypi.org/project/ormar">
|
||||
<img src="https://img.shields.io/pypi/v/ormar.svg" alt="Pypi version">
|
||||
@ -20,27 +20,43 @@
|
||||
</a>
|
||||
</p>
|
||||
|
||||
The `ormar` package is an async ORM for Python, with support for Postgres,
|
||||
MySQL, and SQLite.
|
||||
### Overview
|
||||
|
||||
The `ormar` package is an async mini ORM for Python, with support for **Postgres,
|
||||
MySQL**, and **SQLite**.
|
||||
|
||||
The main benefit of using `ormar` are:
|
||||
|
||||
* getting an **async ORM that can be used with async frameworks** (fastapi, starlette etc.)
|
||||
* getting just **one model to maintain** - you don't have to maintain pydantic and other orm model (sqlalchemy, peewee, gino etc.)
|
||||
|
||||
The goal was to create a simple ORM that can be **used directly (as request and response models) with [`fastapi`][fastapi]** that bases it's data validation on pydantic.
|
||||
|
||||
Ormar - apart form obvious ORM in name - get it's name from ormar in swedish which means snakes, and ormar(e) in italian which means cabinet.
|
||||
|
||||
And what's a better name for python ORM than snakes cabinet :)
|
||||
|
||||
### Documentation
|
||||
|
||||
Check out the [documentation][documentation] for details.
|
||||
|
||||
### Dependencies
|
||||
|
||||
Ormar is built with:
|
||||
|
||||
* [`SQLAlchemy core`][sqlalchemy-core] for query building.
|
||||
* [`databases`][databases] for cross-database async support.
|
||||
* [`pydantic`][pydantic] for data validation.
|
||||
|
||||
### Migrations
|
||||
|
||||
Because ormar is built on SQLAlchemy core, you can use [`alembic`][alembic] to provide
|
||||
database migrations.
|
||||
|
||||
The goal was to create a simple ORM that can be used directly (as request and response models) with [`fastapi`][fastapi] that bases it's data validation on pydantic.
|
||||
Initial work was inspired by [`encode/orm`][encode/orm], later I found `ormantic` and used it as a further inspiration.
|
||||
The encode package was too simple (i.e. no ability to join two times to the same table) and used typesystem for data checks.
|
||||
|
||||
**ormar is still under development:** We recommend pinning any dependencies with `ormar~=0.3.6`
|
||||
|
||||
**ormar is still under development:** We recommend pinning any dependencies with `ormar~=0.2.0`
|
||||
### Quick Start
|
||||
|
||||
**Note**: Use `ipython` to try this from the console, since it supports `await`.
|
||||
|
||||
@ -52,69 +68,6 @@ import sqlalchemy
|
||||
database = databases.Database("sqlite:///db.sqlite")
|
||||
metadata = sqlalchemy.MetaData()
|
||||
|
||||
class Note(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "notes"
|
||||
database = database
|
||||
metadata = metadata
|
||||
|
||||
# primary keys of type int by dafault are set to autoincrement
|
||||
id: ormar.Integer(primary_key=True)
|
||||
text: ormar.String(length=100)
|
||||
completed: ormar.Boolean(default=False)
|
||||
# as of ormar >=0.3.2 you can provide a list of choices that will be validated
|
||||
flag: ormar.String(default='To do', choices=['To do', 'Pending', 'Done'])
|
||||
|
||||
# Create the database
|
||||
engine = sqlalchemy.create_engine(str(database.url))
|
||||
metadata.create_all(engine)
|
||||
|
||||
# .create()
|
||||
await Note.objects.create(text="Buy the groceries.", completed=False)
|
||||
await Note.objects.create(text="Call Mum.", completed=True)
|
||||
await Note.objects.create(text="Send invoices.", completed=True)
|
||||
|
||||
# .all()
|
||||
notes = await Note.objects.all()
|
||||
|
||||
# .filter()
|
||||
notes = await Note.objects.filter(completed=True).all()
|
||||
|
||||
# exact, iexact, contains, icontains, lt, lte, gt, gte, in
|
||||
notes = await Note.objects.filter(text__icontains="mum").all()
|
||||
|
||||
# exclude - from ormar >= 0.3.1
|
||||
notes = await Note.objects.exclude(text__icontains="mum").all()
|
||||
|
||||
# startswith, istartswith, endswith, iendswith - from ormar >= 0.3.3
|
||||
notes = await Note.objects.filter(text__iendswith="mum.").all()
|
||||
notes = await Note.objects.filter(text__istartswith="call").all()
|
||||
notes = await Note.objects.filter(text__startswith="Buy").all()
|
||||
|
||||
# .get()
|
||||
note = await Note.objects.get(id=1)
|
||||
|
||||
# .update()
|
||||
await note.update(completed=True)
|
||||
|
||||
# .delete()
|
||||
await note.delete()
|
||||
|
||||
# 'pk' always refers to the primary key
|
||||
note = await Note.objects.get(pk=2)
|
||||
note.pk # 2
|
||||
```
|
||||
|
||||
Ormar supports loading and filtering across foreign keys...
|
||||
|
||||
```python
|
||||
import databases
|
||||
import ormar
|
||||
import sqlalchemy
|
||||
|
||||
database = databases.Database("sqlite:///db.sqlite")
|
||||
metadata = sqlalchemy.MetaData()
|
||||
|
||||
|
||||
class Album(ormar.Model):
|
||||
class Meta:
|
||||
@ -155,7 +108,7 @@ track = await Track.objects.get(title="The Bird")
|
||||
# We have an album instance, but it only has the primary key populated
|
||||
print(track.album) # Album(id=1) [sparse]
|
||||
print(track.album.pk) # 1
|
||||
print(track.album.name) # Raises AttributeError
|
||||
print(track.album.name) # None
|
||||
|
||||
# Load the relationship from the database
|
||||
await track.album.load()
|
||||
@ -184,310 +137,33 @@ tracks = await Track.objects.limit(1).all()
|
||||
assert len(tracks) == 1
|
||||
```
|
||||
|
||||
Since version >=0.3 Ormar supports also many to many relationships
|
||||
```python
|
||||
import databases
|
||||
import ormar
|
||||
import sqlalchemy
|
||||
|
||||
database = databases.Database("sqlite:///db.sqlite")
|
||||
metadata = sqlalchemy.MetaData()
|
||||
|
||||
class Author(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "authors"
|
||||
database = database
|
||||
metadata = metadata
|
||||
|
||||
id: ormar.Integer(primary_key=True)
|
||||
first_name: ormar.String(max_length=80)
|
||||
last_name: ormar.String(max_length=80)
|
||||
|
||||
|
||||
class Category(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "categories"
|
||||
database = database
|
||||
metadata = metadata
|
||||
|
||||
id: ormar.Integer(primary_key=True)
|
||||
name: ormar.String(max_length=40)
|
||||
|
||||
|
||||
class PostCategory(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "posts_categories"
|
||||
database = database
|
||||
metadata = metadata
|
||||
|
||||
|
||||
class Post(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "posts"
|
||||
database = database
|
||||
metadata = metadata
|
||||
|
||||
id: ormar.Integer(primary_key=True)
|
||||
title: ormar.String(max_length=200)
|
||||
categories: ormar.ManyToMany(Category, through=PostCategory)
|
||||
author: ormar.ForeignKey(Author)
|
||||
|
||||
guido = await Author.objects.create(first_name="Guido", last_name="Van Rossum")
|
||||
post = await Post.objects.create(title="Hello, M2M", author=guido)
|
||||
news = await Category.objects.create(name="News")
|
||||
|
||||
# Add a category to a post.
|
||||
await post.categories.add(news)
|
||||
# or from the other end:
|
||||
await news.posts.add(post)
|
||||
|
||||
# Creating columns object from instance:
|
||||
await post.categories.create(name="Tips")
|
||||
assert len(await post.categories.all()) == 2
|
||||
|
||||
# Many to many relation exposes a list of columns models
|
||||
# and an API of the Queryset:
|
||||
assert news == await post.categories.get(name="News")
|
||||
|
||||
# with all Queryset methods - filtering, selecting columns, counting etc.
|
||||
await news.posts.filter(title__contains="M2M").all()
|
||||
await Category.objects.filter(posts__author=guido).get()
|
||||
|
||||
# columns models of many to many relation can be prefetched
|
||||
news_posts = await news.posts.select_related("author").all()
|
||||
assert news_posts[0].author == guido
|
||||
|
||||
# Removal of the relationship by one
|
||||
await news.posts.remove(post)
|
||||
# or all at once
|
||||
await news.posts.clear()
|
||||
|
||||
```
|
||||
|
||||
Since version >=0.3.4 Ormar supports also queryset level delete and update statements,
|
||||
as well as get_or_create and update_or_create
|
||||
```python
|
||||
import databases
|
||||
import ormar
|
||||
import sqlalchemy
|
||||
|
||||
database = databases.Database("sqlite:///db.sqlite")
|
||||
metadata = sqlalchemy.MetaData()
|
||||
|
||||
class Book(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "books"
|
||||
metadata = metadata
|
||||
database = database
|
||||
|
||||
id: ormar.Integer(primary_key=True)
|
||||
title: ormar.String(max_length=200)
|
||||
author: ormar.String(max_length=100)
|
||||
genre: ormar.String(max_length=100, default='Fiction', choices=['Fiction', 'Adventure', 'Historic', 'Fantasy'])
|
||||
|
||||
await Book.objects.create(title='Tom Sawyer', author="Twain, Mark", genre='Adventure')
|
||||
await Book.objects.create(title='War and Peace', author="Tolstoy, Leo", genre='Fiction')
|
||||
await Book.objects.create(title='Anna Karenina', author="Tolstoy, Leo", genre='Fiction')
|
||||
await Book.objects.create(title='Harry Potter', author="Rowling, J.K.", genre='Fantasy')
|
||||
await Book.objects.create(title='Lord of the Rings', author="Tolkien, J.R.", genre='Fantasy')
|
||||
|
||||
# update accepts kwargs that are used to update queryset model
|
||||
# all other arguments are ignored (argument names not in own model table)
|
||||
await Book.objects.filter(author="Tolstoy, Leo").update(author="Lenin, Vladimir") # update all Tolstoy's books
|
||||
all_books = await Book.objects.filter(author="Lenin, Vladimir").all()
|
||||
assert len(all_books) == 2
|
||||
|
||||
# delete accepts kwargs that will be used in filter
|
||||
# acting in same way as queryset.filter(**kwargs).delete()
|
||||
await Book.objects.delete(genre='Fantasy') # delete all fantasy books
|
||||
all_books = await Book.objects.all()
|
||||
assert len(all_books) == 3
|
||||
|
||||
# queryset needs to be filtered before deleting to prevent accidental overwrite
|
||||
# to update whole database table each=True needs to be provided as a safety switch
|
||||
await Book.objects.update(each=True, genre='Fiction')
|
||||
all_books = await Book.objects.filter(genre='Fiction').all()
|
||||
assert len(all_books) == 3
|
||||
|
||||
# helper get/update or create methods of queryset
|
||||
# if not exists it will be created
|
||||
vol1 = await Book.objects.get_or_create(title="Volume I", author='Anonymous', genre='Fiction')
|
||||
assert await Book.objects.count() == 1
|
||||
|
||||
# if exists it will be returned
|
||||
assert await Book.objects.get_or_create(title="Volume I", author='Anonymous', genre='Fiction') == vol1
|
||||
assert await Book.objects.count() == 1
|
||||
|
||||
# if not exist the instance will be persisted in db
|
||||
vol2 = await Book.objects.update_or_create(title="Volume II", author='Anonymous', genre='Fiction')
|
||||
assert await Book.objects.count() == 1
|
||||
|
||||
# if pk or pkname passed in kwargs (like id here) the object will be updated
|
||||
assert await Book.objects.update_or_create(id=vol2.id, genre='Historic')
|
||||
assert await Book.objects.count() == 1
|
||||
|
||||
```
|
||||
|
||||
|
||||
Since version >=0.3.5 Ormar supports also bulk operations -> bulk_create and bulk_update
|
||||
```python
|
||||
import databases
|
||||
import ormar
|
||||
import sqlalchemy
|
||||
|
||||
database = databases.Database("sqlite:///db.sqlite")
|
||||
metadata = sqlalchemy.MetaData()
|
||||
|
||||
|
||||
class ToDo(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "todos"
|
||||
metadata = metadata
|
||||
database = database
|
||||
|
||||
id: ormar.Integer(primary_key=True)
|
||||
text: ormar.String(max_length=500)
|
||||
completed: ormar.Boolean(default=False)
|
||||
|
||||
# create multiple instances at once with bulk_create
|
||||
await ToDo.objects.bulk_create(
|
||||
[
|
||||
ToDo(text="Buy the groceries."),
|
||||
ToDo(text="Call Mum.", completed=True),
|
||||
ToDo(text="Send invoices.", completed=True),
|
||||
]
|
||||
)
|
||||
|
||||
todoes = await ToDo.objects.all()
|
||||
assert len(todoes) == 3
|
||||
|
||||
# update objects
|
||||
for todo in todoes:
|
||||
todo.completed = False
|
||||
|
||||
# perform update of all objects at once
|
||||
# objects need to have pk column set, otherwise exception is raised
|
||||
await ToDo.objects.bulk_update(todoes)
|
||||
|
||||
completed = await ToDo.objects.filter(completed=False).all()
|
||||
assert len(completed) == 3
|
||||
|
||||
```
|
||||
|
||||
Since version >=0.3.6 Ormar supports unique constraints on multiple columns
|
||||
```python
|
||||
import databases
|
||||
import ormar
|
||||
import sqlalchemy
|
||||
|
||||
database = databases.Database("sqlite:///db.sqlite")
|
||||
metadata = sqlalchemy.MetaData()
|
||||
|
||||
|
||||
class Product(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "products"
|
||||
metadata = metadata
|
||||
database = database
|
||||
# define your constraints in Meta class of the model
|
||||
# it's a list that can contain multiple constraints
|
||||
constraints = [ormar.UniqueColumns("name", "company")]
|
||||
|
||||
id: ormar.Integer(primary_key=True)
|
||||
name: ormar.String(max_length=100)
|
||||
company: ormar.String(max_length=200)
|
||||
|
||||
await Product.objects.create(name="Cookies", company="Nestle")
|
||||
await Product.objects.create(name="Mars", company="Mars")
|
||||
await Product.objects.create(name="Mars", company="Nestle")
|
||||
|
||||
|
||||
# will raise error based on backend
|
||||
# (sqlite3.IntegrityError, pymysql.IntegrityError, asyncpg.exceptions.UniqueViolationError)
|
||||
await Product.objects.create(name="Mars", company="Mars")
|
||||
|
||||
```
|
||||
|
||||
Since version >=0.3.6 Ormar supports selecting subset of model columns to limit the data load.
|
||||
Warning - mandatory fields cannot be excluded as it will raise validation error, to exclude a field it has to be nullable.
|
||||
Pk column cannot be excluded - it's always auto added even if not explicitly included.
|
||||
```python
|
||||
import databases
|
||||
import pydantic
|
||||
import pytest
|
||||
import sqlalchemy
|
||||
|
||||
import ormar
|
||||
from tests.settings import DATABASE_URL
|
||||
|
||||
database = databases.Database(DATABASE_URL, force_rollback=True)
|
||||
metadata = sqlalchemy.MetaData()
|
||||
|
||||
|
||||
class Company(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "companies"
|
||||
metadata = metadata
|
||||
database = database
|
||||
|
||||
id: ormar.Integer(primary_key=True)
|
||||
name: ormar.String(max_length=100)
|
||||
founded: ormar.Integer(nullable=True)
|
||||
|
||||
|
||||
class Car(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "cars"
|
||||
metadata = metadata
|
||||
database = database
|
||||
|
||||
id: ormar.Integer(primary_key=True)
|
||||
manufacturer: ormar.ForeignKey(Company)
|
||||
name: ormar.String(max_length=100)
|
||||
year: ormar.Integer(nullable=True)
|
||||
gearbox_type: ormar.String(max_length=20, nullable=True)
|
||||
gears: ormar.Integer(nullable=True)
|
||||
aircon_type: ormar.String(max_length=20, nullable=True)
|
||||
|
||||
|
||||
|
||||
# build some sample data
|
||||
toyota = await Company.objects.create(name="Toyota", founded=1937)
|
||||
await Car.objects.create(manufacturer=toyota, name="Corolla", year=2020, gearbox_type='Manual', gears=5,
|
||||
aircon_type='Manual')
|
||||
await Car.objects.create(manufacturer=toyota, name="Yaris", year=2019, gearbox_type='Manual', gears=5,
|
||||
aircon_type='Manual')
|
||||
await Car.objects.create(manufacturer=toyota, name="Supreme", year=2020, gearbox_type='Auto', gears=6,
|
||||
aircon_type='Auto')
|
||||
|
||||
# select manufacturer but only name - to include related models use notation {model_name}__{column}
|
||||
all_cars = await Car.objects.select_related('manufacturer').fields(['id', 'name', 'company__name']).all()
|
||||
for car in all_cars:
|
||||
# excluded columns will yield None
|
||||
assert all(getattr(car, x) is None for x in ['year', 'gearbox_type', 'gears', 'aircon_type'])
|
||||
# included column on related models will be available, pk column is always included
|
||||
# even if you do not include it in fields list
|
||||
assert car.manufacturer.name == 'Toyota'
|
||||
# also in the nested related models - you cannot exclude pk - it's always auto added
|
||||
assert car.manufacturer.founded is None
|
||||
|
||||
# fields() can be called several times, building up the columns to select
|
||||
# models selected in select_related but with no columns in fields list implies all fields
|
||||
all_cars = await Car.objects.select_related('manufacturer').fields('id').fields(
|
||||
['name']).all()
|
||||
# all fiels from company model are selected
|
||||
assert all_cars[0].manufacturer.name == 'Toyota'
|
||||
assert all_cars[0].manufacturer.founded == 1937
|
||||
|
||||
# cannot exclude mandatory model columns - company__name in this example
|
||||
await Car.objects.select_related('manufacturer').fields(['id', 'name', 'company__founded']).all()
|
||||
# will raise pydantic ValidationError as company.name is required
|
||||
|
||||
```
|
||||
|
||||
|
||||
## Data types
|
||||
|
||||
#### Relation types
|
||||
|
||||
* One to many - with `ForeignKey`
|
||||
* Many to many - with `Many2Many`
|
||||
|
||||
#### Model fields types
|
||||
|
||||
Available Model Fields (with required args - optional ones in docs):
|
||||
|
||||
* `String(max_length)`
|
||||
* `Text()`
|
||||
* `Boolean()`
|
||||
* `Integer()`
|
||||
* `Float()`
|
||||
* `Date()`
|
||||
* `Time()`
|
||||
* `DateTime()`
|
||||
* `JSON()`
|
||||
* `BigInteger()`
|
||||
* `Decimal(scale, precision)`
|
||||
* `UUID()`
|
||||
* `ForeignKey(to)`
|
||||
* `Many2Many(to, through)`
|
||||
|
||||
### Available fields options
|
||||
The following keyword arguments are supported on all field types.
|
||||
|
||||
* `primary_key: bool`
|
||||
@ -506,25 +182,12 @@ All fields are required unless one of the following is set:
|
||||
* `primary key` with `autoincrement` - When a column is set to primary key and autoincrement is set on this column.
|
||||
Autoincrement is set by default on int primary keys.
|
||||
|
||||
Available Model Fields (with required args - optional ones in docs):
|
||||
* `String(max_length)`
|
||||
* `Text()`
|
||||
* `Boolean()`
|
||||
* `Integer()`
|
||||
* `Float()`
|
||||
* `Date()`
|
||||
* `Time()`
|
||||
* `DateTime()`
|
||||
* `JSON()`
|
||||
* `BigInteger()`
|
||||
* `Decimal(scale, precision)`
|
||||
* `UUID()`
|
||||
* `ForeignKey(to)`
|
||||
* `Many2Many(to, through)`
|
||||
|
||||
|
||||
[sqlalchemy-core]: https://docs.sqlalchemy.org/en/latest/core/
|
||||
[databases]: https://github.com/encode/databases
|
||||
[pydantic]: https://pydantic-docs.helpmanual.io/
|
||||
[encode/orm]: https://github.com/encode/orm/
|
||||
[alembic]: https://alembic.sqlalchemy.org/en/latest/
|
||||
[fastapi]: https://fastapi.tiangolo.com/
|
||||
[fastapi]: https://fastapi.tiangolo.com/
|
||||
[documentation]: https://ormar.collerek.com/
|
||||
@ -0,0 +1,50 @@
|
||||
## Installation
|
||||
|
||||
Installation is as simple as:
|
||||
|
||||
```py
|
||||
pip install ormar
|
||||
```
|
||||
|
||||
### Dependencies
|
||||
|
||||
Ormar uses `databases` for connectivity issues, `pydantic` for validation and `sqlalchemy-core` for queries.
|
||||
|
||||
All three should install along the installation of ormar if not present at your system before.
|
||||
|
||||
* databases
|
||||
* pydantic>=1.5
|
||||
* sqlalchemy
|
||||
|
||||
|
||||
## Optional dependencies
|
||||
|
||||
*ormar* has three optional dependencies based on database backend you use:
|
||||
|
||||
### Postgresql
|
||||
|
||||
```py
|
||||
pip install ormar[postgresql]
|
||||
```
|
||||
|
||||
### Mysql
|
||||
|
||||
Will install also `asyncpg` and `psycopg2`.
|
||||
|
||||
```py
|
||||
pip install ormar[mysql]
|
||||
```
|
||||
|
||||
Will install also `aiomysql` and `pymysql`.
|
||||
|
||||
### Sqlite
|
||||
|
||||
```py
|
||||
pip install ormar[sqlite]
|
||||
```
|
||||
|
||||
Will install also `aiosqlite`.
|
||||
|
||||
### Manual installation of dependencies
|
||||
|
||||
Of course, you can also install these requirements manually with `pip install asyncpg` etc.
|
||||
|
||||
210
docs/queries.md
210
docs/queries.md
@ -130,6 +130,45 @@ assert len(all_books) == 3
|
||||
|
||||
`update_or_create(**kwargs) -> Model`
|
||||
|
||||
Updates the model, or in case there is no match in database creates a new one.
|
||||
|
||||
```python hl_lines="24-30"
|
||||
import databases
|
||||
import ormar
|
||||
import sqlalchemy
|
||||
|
||||
database = databases.Database("sqlite:///db.sqlite")
|
||||
metadata = sqlalchemy.MetaData()
|
||||
|
||||
class Book(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "books"
|
||||
metadata = metadata
|
||||
database = database
|
||||
|
||||
id: ormar.Integer(primary_key=True)
|
||||
title: ormar.String(max_length=200)
|
||||
author: ormar.String(max_length=100)
|
||||
genre: ormar.String(max_length=100, default='Fiction', choices=['Fiction', 'Adventure', 'Historic', 'Fantasy'])
|
||||
|
||||
await Book.objects.create(title='Tom Sawyer', author="Twain, Mark", genre='Adventure')
|
||||
await Book.objects.create(title='War and Peace', author="Tolstoy, Leo", genre='Fiction')
|
||||
await Book.objects.create(title='Anna Karenina', author="Tolstoy, Leo", genre='Fiction')
|
||||
|
||||
|
||||
# if not exist the instance will be persisted in db
|
||||
vol2 = await Book.objects.update_or_create(title="Volume II", author='Anonymous', genre='Fiction')
|
||||
assert await Book.objects.count() == 1
|
||||
|
||||
# if pk or pkname passed in kwargs (like id here) the object will be updated
|
||||
assert await Book.objects.update_or_create(id=vol2.id, genre='Historic')
|
||||
assert await Book.objects.count() == 1
|
||||
```
|
||||
|
||||
!!!note
|
||||
Note that if you want to create a new object you either have to pass pk column value or pk column has to be set as autoincrement
|
||||
|
||||
|
||||
### bulk_create
|
||||
|
||||
`bulk_create(objects: List["Model"]) -> None`
|
||||
@ -238,15 +277,27 @@ assert len(all_books) == 2
|
||||
|
||||
### all
|
||||
|
||||
Returns all rows from a database for given model
|
||||
`all(self, **kwargs) -> List[Optional["Model"]]`
|
||||
|
||||
Returns all rows from a database for given model for set filter options.
|
||||
|
||||
Passing kwargs is a shortcut and equals to calling `filter(**kwrags).all()`.
|
||||
|
||||
If there are no rows meeting the criteria an empty list is returned.
|
||||
|
||||
```python
|
||||
tracks = await Track.objects.select_related("album").all()
|
||||
# will return a list of all Tracks
|
||||
tracks = await Track.objects.select_related("album").all(title='Sample')
|
||||
# will return a list of all Tracks with title Sample
|
||||
|
||||
tracks = await Track.objects.all()
|
||||
# will return a list of all Tracks in database
|
||||
|
||||
```
|
||||
|
||||
### filter
|
||||
|
||||
`filter(**kwargs) -> QuerySet`
|
||||
|
||||
Allows you to filter by any `Model` attribute/field
|
||||
as well as to fetch instances, with a filter across an FK relationship.
|
||||
|
||||
@ -269,16 +320,40 @@ You can use special filter suffix to change the filter operands:
|
||||
* gte - like `position__gte=3` (sql >=)
|
||||
* lt - like `position__lt=3` (sql <)
|
||||
* lte - like `position__lte=3` (sql <=)
|
||||
* startswith - like `album__name__startswith='Mal'` (exact start match)
|
||||
* istartswith - like `album__name__istartswith='mal'` (exact start match case insensitive)
|
||||
* endswith - like `album__name__endswith='ibu'` (exact end match)
|
||||
* iendswith - like `album__name__iendswith='IBU'` (exact end match case insensitive)
|
||||
|
||||
!!!note
|
||||
`filter()`, `select_related()`, `limit()` and `offset()` returns a QueySet instance so you can chain them together.
|
||||
All methods that do not return the rows explicitly returns a QueySet instance so you can chain them together
|
||||
|
||||
So operations like `filter()`, `select_related()`, `limit()` and `offset()` etc. can be chained.
|
||||
|
||||
Something like `Track.object.select_related("album").filter(album__name="Malibu").offset(1).limit(1).all()`
|
||||
|
||||
### exclude
|
||||
|
||||
`exclude(**kwargs) -> QuerySet`
|
||||
|
||||
Works exactly the same as filter and all modifiers (suffixes) are the same, but returns a not condition.
|
||||
|
||||
So if you use `filter(name='John')` which equals to `where name = 'John'` in SQL,
|
||||
the `exclude(name='John')` equals to `where name <> 'John'`
|
||||
|
||||
Note that all conditions are joined so if you pass multiple values it becomes a union of conditions.
|
||||
|
||||
`exclude(name='John', age>=35)` will become `where not (name='John' and age>=35)`
|
||||
|
||||
```python
|
||||
notes = await Track.objects.exclude(position_gt=3).all()
|
||||
# returns all tracks with position < 3
|
||||
```
|
||||
|
||||
### select_related
|
||||
|
||||
`select_related(related: Union[List, str]) -> QuerySet`
|
||||
|
||||
Allows to prefetch related models.
|
||||
|
||||
To fetch related model use `ForeignKey` names.
|
||||
@ -299,17 +374,24 @@ classes = await SchoolClass.objects.select_related(
|
||||
# as well as classes students
|
||||
```
|
||||
|
||||
Exactly the same behavior is for Many2Many fields, where you put the names of Many2Many fields and the final `Models` are fetched for you.
|
||||
|
||||
!!!warning
|
||||
If you set `ForeignKey` field as not nullable (so required) during
|
||||
all queries the not nullable `Models` will be auto prefetched, even if you do not include them in select_related.
|
||||
|
||||
!!!note
|
||||
`filter()`, `select_related()`, `limit()` and `offset()` returns a QueySet instance so you can chain them together.
|
||||
All methods that do not return the rows explicitly returns a QueySet instance so you can chain them together
|
||||
|
||||
So operations like `filter()`, `select_related()`, `limit()` and `offset()` etc. can be chained.
|
||||
|
||||
Something like `Track.object.select_related("album").filter(album__name="Malibu").offset(1).limit(1).all()`
|
||||
|
||||
|
||||
### limit
|
||||
|
||||
`limit(limit_count: int) -> QuerySet`
|
||||
|
||||
You can limit the results to desired number of rows.
|
||||
|
||||
```python
|
||||
@ -318,12 +400,16 @@ tracks = await Track.objects.limit(1).all()
|
||||
```
|
||||
|
||||
!!!note
|
||||
`filter()`, `select_related()`, `limit()` and `offset()` returns a QueySet instance so you can chain them together.
|
||||
All methods that do not return the rows explicitly returns a QueySet instance so you can chain them together
|
||||
|
||||
So operations like `filter()`, `select_related()`, `limit()` and `offset()` etc. can be chained.
|
||||
|
||||
Something like `Track.object.select_related("album").filter(album__name="Malibu").offset(1).limit(1).all()`
|
||||
|
||||
### offset
|
||||
|
||||
`offset(offset: int) -> QuerySet`
|
||||
|
||||
You can also offset the results by desired number of rows.
|
||||
|
||||
```python
|
||||
@ -331,18 +417,126 @@ tracks = await Track.objects.offset(1).limit(1).all()
|
||||
# will return just one Track, but this time the second one
|
||||
```
|
||||
|
||||
!!!note
|
||||
All methods that do not return the rows explicitly returns a QueySet instance so you can chain them together
|
||||
|
||||
So operations like `filter()`, `select_related()`, `limit()` and `offset()` etc. can be chained.
|
||||
|
||||
Something like `Track.object.select_related("album").filter(album__name="Malibu").offset(1).limit(1).all()`
|
||||
|
||||
|
||||
### count
|
||||
|
||||
`count() -> int`
|
||||
|
||||
Returns number of rows matching the given criteria (applied with `filter` and `exclude`)
|
||||
|
||||
```python
|
||||
# returns count of rows in db
|
||||
no_of_books = await Book.objects.count()
|
||||
```
|
||||
|
||||
### exists
|
||||
|
||||
`exists() -> bool`
|
||||
|
||||
Returns a bool value to confirm if there are rows matching the given criteria (applied with `filter` and `exclude`)
|
||||
|
||||
```python
|
||||
# returns a boolean value if given row exists
|
||||
has_sample = await Book.objects.filter(title='Sample').exists()
|
||||
```
|
||||
|
||||
### fields
|
||||
|
||||
`fields(columns: Union[List, str]) -> QuerySet`
|
||||
|
||||
With `fields()` you can select subset of model columns to limit the data load.
|
||||
|
||||
```python hl_lines="48 60 61 67"
|
||||
import databases
|
||||
import sqlalchemy
|
||||
|
||||
import ormar
|
||||
from tests.settings import DATABASE_URL
|
||||
|
||||
database = databases.Database(DATABASE_URL, force_rollback=True)
|
||||
metadata = sqlalchemy.MetaData()
|
||||
|
||||
|
||||
class Company(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "companies"
|
||||
metadata = metadata
|
||||
database = database
|
||||
|
||||
id: ormar.Integer(primary_key=True)
|
||||
name: ormar.String(max_length=100)
|
||||
founded: ormar.Integer(nullable=True)
|
||||
|
||||
|
||||
class Car(ormar.Model):
|
||||
class Meta:
|
||||
tablename = "cars"
|
||||
metadata = metadata
|
||||
database = database
|
||||
|
||||
id: ormar.Integer(primary_key=True)
|
||||
manufacturer: ormar.ForeignKey(Company)
|
||||
name: ormar.String(max_length=100)
|
||||
year: ormar.Integer(nullable=True)
|
||||
gearbox_type: ormar.String(max_length=20, nullable=True)
|
||||
gears: ormar.Integer(nullable=True)
|
||||
aircon_type: ormar.String(max_length=20, nullable=True)
|
||||
|
||||
|
||||
|
||||
# build some sample data
|
||||
toyota = await Company.objects.create(name="Toyota", founded=1937)
|
||||
await Car.objects.create(manufacturer=toyota, name="Corolla", year=2020, gearbox_type='Manual', gears=5,
|
||||
aircon_type='Manual')
|
||||
await Car.objects.create(manufacturer=toyota, name="Yaris", year=2019, gearbox_type='Manual', gears=5,
|
||||
aircon_type='Manual')
|
||||
await Car.objects.create(manufacturer=toyota, name="Supreme", year=2020, gearbox_type='Auto', gears=6,
|
||||
aircon_type='Auto')
|
||||
|
||||
# select manufacturer but only name - to include related models use notation {model_name}__{column}
|
||||
all_cars = await Car.objects.select_related('manufacturer').fields(['id', 'name', 'company__name']).all()
|
||||
for car in all_cars:
|
||||
# excluded columns will yield None
|
||||
assert all(getattr(car, x) is None for x in ['year', 'gearbox_type', 'gears', 'aircon_type'])
|
||||
# included column on related models will be available, pk column is always included
|
||||
# even if you do not include it in fields list
|
||||
assert car.manufacturer.name == 'Toyota'
|
||||
# also in the nested related models - you cannot exclude pk - it's always auto added
|
||||
assert car.manufacturer.founded is None
|
||||
|
||||
# fields() can be called several times, building up the columns to select
|
||||
# models selected in select_related but with no columns in fields list implies all fields
|
||||
all_cars = await Car.objects.select_related('manufacturer').fields('id').fields(
|
||||
['name']).all()
|
||||
# all fiels from company model are selected
|
||||
assert all_cars[0].manufacturer.name == 'Toyota'
|
||||
assert all_cars[0].manufacturer.founded == 1937
|
||||
|
||||
# cannot exclude mandatory model columns - company__name in this example
|
||||
await Car.objects.select_related('manufacturer').fields(['id', 'name', 'company__founded']).all()
|
||||
# will raise pydantic ValidationError as company.name is required
|
||||
|
||||
```
|
||||
|
||||
!!!warning
|
||||
Mandatory fields cannot be excluded as it will raise `ValidationError`, to exclude a field it has to be nullable.
|
||||
|
||||
!!!tip
|
||||
Pk column cannot be excluded - it's always auto added even if not explicitly included.
|
||||
|
||||
|
||||
!!!note
|
||||
`filter()`, `select_related()`, `limit()` and `offset()` returns a QueySet instance so you can chain them together.
|
||||
All methods that do not return the rows explicitly returns a QueySet instance so you can chain them together
|
||||
|
||||
So operations like `filter()`, `select_related()`, `limit()` and `offset()` etc. can be chained.
|
||||
|
||||
Something like `Track.object.select_related("album").filter(album__name="Malibu").offset(1).limit(1).all()`
|
||||
|
||||
|
||||
[models]: ./models.md
|
||||
Reference in New Issue
Block a user