Add benchmarking test suite and greatly improve performance in a few cases (#948)
* Add benchmarking test suite * Improve amortized time of model relation loads with a large number of rows * Improve performance of loading models with many related models * Improve performance of loading models with many related models to O(N)ish * Fix bug where N model creation with shared related model would build in N^2 time * Lower blocking time for queryset results * Add docstrings and streamline hash code Co-authored-by: haydeec1 <Eric.Haydel@jhuapl.edu>
This commit is contained in:
48
benchmarks/test_benchmark_init.py
Normal file
48
benchmarks/test_benchmark_init.py
Normal file
@ -0,0 +1,48 @@
|
||||
import random
|
||||
import string
|
||||
|
||||
import pytest
|
||||
|
||||
from benchmarks.conftest import Author, Book, Publisher
|
||||
|
||||
pytestmark = pytest.mark.asyncio
|
||||
|
||||
|
||||
@pytest.mark.parametrize("num_models", [250, 500, 1000])
|
||||
async def test_initializing_models(aio_benchmark, num_models: int):
|
||||
@aio_benchmark
|
||||
async def initialize_models(num_models: int):
|
||||
authors = [
|
||||
Author(
|
||||
name="".join(random.sample(string.ascii_letters, 5)),
|
||||
score=random.random() * 100,
|
||||
)
|
||||
for i in range(0, num_models)
|
||||
]
|
||||
assert len(authors) == num_models
|
||||
|
||||
initialize_models(num_models)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("num_models", [10, 20, 40])
|
||||
async def test_initializing_models_with_related_models(aio_benchmark, num_models: int):
|
||||
@aio_benchmark
|
||||
async def initialize_models_with_related_models(
|
||||
author: Author, publisher: Publisher, num_models: int
|
||||
):
|
||||
books = [
|
||||
Book(
|
||||
author=author,
|
||||
publisher=publisher,
|
||||
title="".join(random.sample(string.ascii_letters, 5)),
|
||||
year=random.randint(0, 2000),
|
||||
)
|
||||
for i in range(0, num_models)
|
||||
]
|
||||
|
||||
author = await Author(name="Author", score=10).save()
|
||||
publisher = await Publisher(name="Publisher", prestige=random.randint(0, 10)).save()
|
||||
|
||||
ids = initialize_models_with_related_models(
|
||||
author=author, publisher=publisher, num_models=num_models
|
||||
)
|
||||
Reference in New Issue
Block a user