update documentation, optimize for memory saving, update docs for select_related, fields and exclude_fields, bump version
This commit is contained in:
164
docs/queries.md
164
docs/queries.md
@ -253,11 +253,22 @@ notes = await Track.objects.exclude(position_gt=3).all()
|
||||
|
||||
`select_related(related: Union[List, str]) -> QuerySet`
|
||||
|
||||
Allows to prefetch related models.
|
||||
Allows to prefetch related models during the same query.
|
||||
|
||||
**With `select_related` always only one query is run against the database**, meaning that one
|
||||
(sometimes complicated) join is generated and later nested models are processed in python.
|
||||
|
||||
To fetch related model use `ForeignKey` names.
|
||||
|
||||
To chain related `Models` relation use double underscore.
|
||||
To chain related `Models` relation use double underscores between names.
|
||||
|
||||
!!!note
|
||||
If you are coming from `django` note that `ormar` `select_related` differs -> in `django` you can `select_related`
|
||||
only singe relation types, while in `ormar` you can select related across `ForeignKey` relation,
|
||||
reverse side of `ForeignKey` (so virtual auto generated keys) and `ManyToMany` fields (so all relations as of current version).
|
||||
|
||||
!!!note
|
||||
To control which model fields to select use `fields()` and `exclude_fields()` `QuerySet` methods.
|
||||
|
||||
```python
|
||||
album = await Album.objects.select_related("tracks").all()
|
||||
@ -286,6 +297,147 @@ Exactly the same behavior is for Many2Many fields, where you put the names of Ma
|
||||
|
||||
Something like `Track.object.select_related("album").filter(album__name="Malibu").offset(1).limit(1).all()`
|
||||
|
||||
### prefetch_related
|
||||
|
||||
`prefetch_related(related: Union[List, str]) -> QuerySet`
|
||||
|
||||
Allows to prefetch related models during query - but opposite to `select_related` each
|
||||
subsequent model is fetched in a separate database query.
|
||||
|
||||
**With `prefetch_related` always one query per Model is run against the database**,
|
||||
meaning that you will have multiple queries executed one after another.
|
||||
|
||||
To fetch related model use `ForeignKey` names.
|
||||
|
||||
To chain related `Models` relation use double underscores between names.
|
||||
|
||||
!!!note
|
||||
To control which model fields to select use `fields()` and `exclude_fields()` `QuerySet` methods.
|
||||
|
||||
```python
|
||||
album = await Album.objects.prefetch_related("tracks").all()
|
||||
# will return album will all columns tracks
|
||||
```
|
||||
|
||||
You can provide a string or a list of strings
|
||||
|
||||
```python
|
||||
classes = await SchoolClass.objects.prefetch_related(
|
||||
["teachers__category", "students"]).all()
|
||||
# will return classes with teachers and teachers categories
|
||||
# as well as classes students
|
||||
```
|
||||
|
||||
Exactly the same behavior is for Many2Many fields, where you put the names of Many2Many fields and the final `Models` are fetched for you.
|
||||
|
||||
!!!warning
|
||||
If you set `ForeignKey` field as not nullable (so required) during
|
||||
all queries the not nullable `Models` will be auto prefetched, even if you do not include them in select_related.
|
||||
|
||||
!!!note
|
||||
All methods that do not return the rows explicitly returns a QueySet instance so you can chain them together
|
||||
|
||||
So operations like `filter()`, `select_related()`, `limit()` and `offset()` etc. can be chained.
|
||||
|
||||
Something like `Track.object.select_related("album").filter(album__name="Malibu").offset(1).limit(1).all()`
|
||||
|
||||
### select_related vs prefetch_related
|
||||
|
||||
Which should you use -> `select_related` or `prefetch_related`?
|
||||
|
||||
Well, it really depends on your data. The best answer is try yourself and see which one performs faster/better in your system constraints.
|
||||
|
||||
What to keep in mind:
|
||||
|
||||
#### Performance
|
||||
|
||||
**Number of queries**:
|
||||
`select_related` always executes one query against the database, while `prefetch_related` executes multiple queries.
|
||||
Usually the query (I/O) operation is the slowest one but it does not have to be.
|
||||
|
||||
**Number of rows**:
|
||||
Imagine that you have 10 000 object in one table A and each of those objects have 3 children in table B,
|
||||
and subsequently each object in table B has 2 children in table C. Something like this:
|
||||
|
||||
```
|
||||
Model C
|
||||
/
|
||||
Model B - Model C
|
||||
/
|
||||
Model A - Model B - Model C
|
||||
\ \
|
||||
\ Model C
|
||||
\
|
||||
Model B - Model C
|
||||
\
|
||||
Model C
|
||||
```
|
||||
|
||||
That means that `select_related` will always return 60 000 rows (10 000 * 3 * 2) later compacted to 10 000 models.
|
||||
|
||||
How many rows will return `prefetch_related`?
|
||||
|
||||
Well, that depends, if each of models B and C is unique it will return 10 000 rows in first query, 30 000 rows
|
||||
(each of 3 children of A in table B are unique) in second query and 60 000 rows (each of 2 children of model B
|
||||
in table C are unique) in 3rd query.
|
||||
|
||||
In this case `select_related` seems like a better choice, not only it will run one query comparing to 3 of
|
||||
`prefetch_related` but will also return 60 000 rows comparing to 100 000 of `prefetch_related` (10+30+60k).
|
||||
|
||||
But what if each Model A has exactly the same 3 models B and each models C has exactly same models C? `select_related`
|
||||
will still return 60 000 rows, while `prefetch_related` will return 10 000 for model A, 3 rows for model B and 2 rows for Model C.
|
||||
So in total 10 006 rows. Now depending on the structure of models (i.e. if it has long Text() fields etc.) `prefetch_related`
|
||||
might be faster despite it needs to perform three separate queries instead of one.
|
||||
|
||||
#### Memory
|
||||
|
||||
`ormar` is a mini ORM meaning that it does not keep a registry of already loaded models.
|
||||
|
||||
That means that in `select_related` example above you will always have 10 000 Models A, 30 000 Models B
|
||||
(even if the unique number of rows in db is 3 - processing of `select_related` spawns **new** child models for each parent model).
|
||||
And 60 000 Models C.
|
||||
|
||||
If the same Model B is shared by rows 1, 10, 100 etc. and you update one of those, the rest of rows
|
||||
that share the same child will **not** be updated on the spot.
|
||||
If you persist your changes into the database the change **will be available only after reload
|
||||
(either each child separately or the whole query again)**.
|
||||
That means that `select_related` will use more memory as each child is instantiated as a new object - obviously using it's own space.
|
||||
|
||||
!!!note
|
||||
This might change in future versions if we decide to introduce caching.
|
||||
|
||||
!!!warning
|
||||
By default all children (or event the same models loaded 2+ times) are completely independent, distinct python objects, despite that they represent the same row in db.
|
||||
|
||||
They will evaluate to True when compared, so in example above:
|
||||
|
||||
```python
|
||||
# will return True if child1 of both rows is the same child db row
|
||||
row1.child1 == row100.child1
|
||||
|
||||
# same here:
|
||||
model1 = await Model.get(pk=1)
|
||||
model2 = await Model.get(pk=1) # same pk = same row in db
|
||||
# will return `True`
|
||||
model1 == model2
|
||||
```
|
||||
|
||||
but
|
||||
|
||||
```python
|
||||
# will return False (note that id is a python `builtin` function not ormar one).
|
||||
id(row1.child1) == (ro100.child1)
|
||||
|
||||
# from above - will also return False
|
||||
id(model1) == id(model2)
|
||||
```
|
||||
|
||||
|
||||
On the contrary - with `prefetch_related` each unique distinct child model is instantiated
|
||||
only once and the same child models is shared across all parent models.
|
||||
That means that in `prefetch_related` example above if there are 3 distinct models in table B and 2 in table C,
|
||||
there will be only 5 children nested models shared between all model A instances. That also means that if you update
|
||||
any attribute it will be updated on all parents as they share the same child object.
|
||||
|
||||
### limit
|
||||
|
||||
@ -352,6 +504,10 @@ has_sample = await Book.objects.filter(title='Sample').exists()
|
||||
|
||||
With `fields()` you can select subset of model columns to limit the data load.
|
||||
|
||||
!!!note
|
||||
Note that `fields()` and `exclude_fields()` works both for main models (on normal queries like `get`, `all` etc.)
|
||||
as well as `select_related` and `prefetch_related` models (with nested notation).
|
||||
|
||||
Given a sample data like following:
|
||||
|
||||
```python
|
||||
@ -433,6 +589,10 @@ It's the opposite of `fields()` method so check documentation above to see what
|
||||
|
||||
Especially check above how you can pass also nested dictionaries and sets as a mask to exclude fields from whole hierarchy.
|
||||
|
||||
!!!note
|
||||
Note that `fields()` and `exclude_fields()` works both for main models (on normal queries like `get`, `all` etc.)
|
||||
as well as `select_related` and `prefetch_related` models (with nested notation).
|
||||
|
||||
Below you can find few simple examples:
|
||||
|
||||
```python hl_lines="47 48 60 61 67"
|
||||
|
||||
Reference in New Issue
Block a user