update docs part 1

This commit is contained in:
collerek
2020-10-06 19:09:58 +02:00
parent dd46dbcfd4
commit ba0990d05b
11 changed files with 505 additions and 212 deletions

View File

@ -1,5 +1,4 @@
# ORMar
<p>
<a href="https://pypi.org/project/ormar">
<img src="https://img.shields.io/pypi/v/ormar.svg" alt="Pypi version">
@ -22,7 +21,12 @@
</p>
The `ormar` package is an async ORM for Python, with support for Postgres,
MySQL, and SQLite. Ormar is built with:
MySQL, and SQLite.
Ormar - apart form obvious ORM in name - get it's name from ormar in swedish which means snakes, and ormar(e) in italian which means cabinet.
And what's a better name for python ORM than snakes cabinet :)
Ormar is built with:
* [`SQLAlchemy core`][sqlalchemy-core] for query building.
* [`databases`][databases] for cross-database async support.
@ -31,11 +35,12 @@ MySQL, and SQLite. Ormar is built with:
Because ormar is built on SQLAlchemy core, you can use [`alembic`][alembic] to provide
database migrations.
The goal was to create a simple ORM that can be used directly with [`fastapi`][fastapi] that bases it's data validation on pydantic.
Initial work was inspired by [`encode/orm`][encode/orm].
The goal was to create a simple ORM that can be used directly (as request and response models) with [`fastapi`][fastapi] that bases it's data validation on pydantic.
Initial work was inspired by [`encode/orm`][encode/orm], later I found `ormantic` and used it as a further inspiration.
The encode package was too simple (i.e. no ability to join two times to the same table) and used typesystem for data checks.
**ormar is still under development:** We recommend pinning any dependencies with `ormar~=0.0.1`
**ormar is still under development:** We recommend pinning any dependencies with `ormar~=0.2.0`
**Note**: Use `ipython` to try this from the console, since it supports `await`.
@ -47,16 +52,18 @@ import sqlalchemy
database = databases.Database("sqlite:///db.sqlite")
metadata = sqlalchemy.MetaData()
class Note(ormar.Model):
__tablename__ = "notes"
__database__ = database
__metadata__ = metadata
class Meta:
tablename = "notes"
database = database
metadata = metadata
# primary keys of type int by dafault are set to autoincrement
id = ormar.Integer(primary_key=True)
text = ormar.String(length=100)
completed = ormar.Boolean(default=False)
id: ormar.Integer(primary_key=True)
text: ormar.String(length=100)
completed: ormar.Boolean(default=False)
# as of ormar >=0.3.2 you can provide a list of choices that will be validated
flag: ormar.String(default='To do', choices=['To do', 'Pending', 'Done'])
# Create the database
engine = sqlalchemy.create_engine(str(database.url))
@ -76,6 +83,14 @@ notes = await Note.objects.filter(completed=True).all()
# exact, iexact, contains, icontains, lt, lte, gt, gte, in
notes = await Note.objects.filter(text__icontains="mum").all()
# exclude - from ormar >= 0.3.1
notes = await Note.objects.exclude(text__icontains="mum").all()
# startswith, istartswith, endswith, iendswith - from ormar >= 0.3.3
notes = await Note.objects.filter(text__iendswith="mum.").all()
notes = await Note.objects.filter(text__istartswith="call").all()
notes = await Note.objects.filter(text__startswith="Buy").all()
# .get()
note = await Note.objects.get(id=1)
@ -102,23 +117,25 @@ metadata = sqlalchemy.MetaData()
class Album(ormar.Model):
__tablename__ = "album"
__metadata__ = metadata
__database__ = database
class Meta:
tablename = "album"
metadata = metadata
database = database
id = ormar.Integer(primary_key=True)
name = ormar.String(length=100)
id: ormar.Integer(primary_key=True)
name: ormar.String(length=100)
class Track(ormar.Model):
__tablename__ = "track"
__metadata__ = metadata
__database__ = database
class Meta:
tablename = "track"
metadata = metadata
database = database
id = ormar.Integer(primary_key=True)
album = ormar.ForeignKey(Album)
title = ormar.String(length=100)
position = ormar.Integer()
id: ormar.Integer(primary_key=True)
album: ormar.ForeignKey(Album)
title: ormar.String(length=100)
position: ormar.Integer()
# Create some records to work with.
@ -167,33 +184,330 @@ tracks = await Track.objects.limit(1).all()
assert len(tracks) == 1
```
Since version >=0.3 Ormar supports also many to many relationships
```python
import databases
import ormar
import sqlalchemy
database = databases.Database("sqlite:///db.sqlite")
metadata = sqlalchemy.MetaData()
class Author(ormar.Model):
class Meta:
tablename = "authors"
database = database
metadata = metadata
id: ormar.Integer(primary_key=True)
first_name: ormar.String(max_length=80)
last_name: ormar.String(max_length=80)
class Category(ormar.Model):
class Meta:
tablename = "categories"
database = database
metadata = metadata
id: ormar.Integer(primary_key=True)
name: ormar.String(max_length=40)
class PostCategory(ormar.Model):
class Meta:
tablename = "posts_categories"
database = database
metadata = metadata
class Post(ormar.Model):
class Meta:
tablename = "posts"
database = database
metadata = metadata
id: ormar.Integer(primary_key=True)
title: ormar.String(max_length=200)
categories: ormar.ManyToMany(Category, through=PostCategory)
author: ormar.ForeignKey(Author)
guido = await Author.objects.create(first_name="Guido", last_name="Van Rossum")
post = await Post.objects.create(title="Hello, M2M", author=guido)
news = await Category.objects.create(name="News")
# Add a category to a post.
await post.categories.add(news)
# or from the other end:
await news.posts.add(post)
# Creating columns object from instance:
await post.categories.create(name="Tips")
assert len(await post.categories.all()) == 2
# Many to many relation exposes a list of columns models
# and an API of the Queryset:
assert news == await post.categories.get(name="News")
# with all Queryset methods - filtering, selecting columns, counting etc.
await news.posts.filter(title__contains="M2M").all()
await Category.objects.filter(posts__author=guido).get()
# columns models of many to many relation can be prefetched
news_posts = await news.posts.select_related("author").all()
assert news_posts[0].author == guido
# Removal of the relationship by one
await news.posts.remove(post)
# or all at once
await news.posts.clear()
```
Since version >=0.3.4 Ormar supports also queryset level delete and update statements,
as well as get_or_create and update_or_create
```python
import databases
import ormar
import sqlalchemy
database = databases.Database("sqlite:///db.sqlite")
metadata = sqlalchemy.MetaData()
class Book(ormar.Model):
class Meta:
tablename = "books"
metadata = metadata
database = database
id: ormar.Integer(primary_key=True)
title: ormar.String(max_length=200)
author: ormar.String(max_length=100)
genre: ormar.String(max_length=100, default='Fiction', choices=['Fiction', 'Adventure', 'Historic', 'Fantasy'])
await Book.objects.create(title='Tom Sawyer', author="Twain, Mark", genre='Adventure')
await Book.objects.create(title='War and Peace', author="Tolstoy, Leo", genre='Fiction')
await Book.objects.create(title='Anna Karenina', author="Tolstoy, Leo", genre='Fiction')
await Book.objects.create(title='Harry Potter', author="Rowling, J.K.", genre='Fantasy')
await Book.objects.create(title='Lord of the Rings', author="Tolkien, J.R.", genre='Fantasy')
# update accepts kwargs that are used to update queryset model
# all other arguments are ignored (argument names not in own model table)
await Book.objects.filter(author="Tolstoy, Leo").update(author="Lenin, Vladimir") # update all Tolstoy's books
all_books = await Book.objects.filter(author="Lenin, Vladimir").all()
assert len(all_books) == 2
# delete accepts kwargs that will be used in filter
# acting in same way as queryset.filter(**kwargs).delete()
await Book.objects.delete(genre='Fantasy') # delete all fantasy books
all_books = await Book.objects.all()
assert len(all_books) == 3
# queryset needs to be filtered before deleting to prevent accidental overwrite
# to update whole database table each=True needs to be provided as a safety switch
await Book.objects.update(each=True, genre='Fiction')
all_books = await Book.objects.filter(genre='Fiction').all()
assert len(all_books) == 3
# helper get/update or create methods of queryset
# if not exists it will be created
vol1 = await Book.objects.get_or_create(title="Volume I", author='Anonymous', genre='Fiction')
assert await Book.objects.count() == 1
# if exists it will be returned
assert await Book.objects.get_or_create(title="Volume I", author='Anonymous', genre='Fiction') == vol1
assert await Book.objects.count() == 1
# if not exist the instance will be persisted in db
vol2 = await Book.objects.update_or_create(title="Volume II", author='Anonymous', genre='Fiction')
assert await Book.objects.count() == 1
# if pk or pkname passed in kwargs (like id here) the object will be updated
assert await Book.objects.update_or_create(id=vol2.id, genre='Historic')
assert await Book.objects.count() == 1
```
Since version >=0.3.5 Ormar supports also bulk operations -> bulk_create and bulk_update
```python
import databases
import ormar
import sqlalchemy
database = databases.Database("sqlite:///db.sqlite")
metadata = sqlalchemy.MetaData()
class ToDo(ormar.Model):
class Meta:
tablename = "todos"
metadata = metadata
database = database
id: ormar.Integer(primary_key=True)
text: ormar.String(max_length=500)
completed: ormar.Boolean(default=False)
# create multiple instances at once with bulk_create
await ToDo.objects.bulk_create(
[
ToDo(text="Buy the groceries."),
ToDo(text="Call Mum.", completed=True),
ToDo(text="Send invoices.", completed=True),
]
)
todoes = await ToDo.objects.all()
assert len(todoes) == 3
# update objects
for todo in todoes:
todo.completed = False
# perform update of all objects at once
# objects need to have pk column set, otherwise exception is raised
await ToDo.objects.bulk_update(todoes)
completed = await ToDo.objects.filter(completed=False).all()
assert len(completed) == 3
```
Since version >=0.3.6 Ormar supports unique constraints on multiple columns
```python
import databases
import ormar
import sqlalchemy
database = databases.Database("sqlite:///db.sqlite")
metadata = sqlalchemy.MetaData()
class Product(ormar.Model):
class Meta:
tablename = "products"
metadata = metadata
database = database
# define your constraints in Meta class of the model
# it's a list that can contain multiple constraints
constraints = [ormar.UniqueColumns("name", "company")]
id: ormar.Integer(primary_key=True)
name: ormar.String(max_length=100)
company: ormar.String(max_length=200)
await Product.objects.create(name="Cookies", company="Nestle")
await Product.objects.create(name="Mars", company="Mars")
await Product.objects.create(name="Mars", company="Nestle")
# will raise error based on backend
# (sqlite3.IntegrityError, pymysql.IntegrityError, asyncpg.exceptions.UniqueViolationError)
await Product.objects.create(name="Mars", company="Mars")
```
Since version >=0.3.6 Ormar supports selecting subset of model columns to limit the data load.
Warning - mandatory fields cannot be excluded as it will raise validation error, to exclude a field it has to be nullable.
Pk column cannot be excluded - it's always auto added even if not explicitly included.
```python
import databases
import pydantic
import pytest
import sqlalchemy
import ormar
from tests.settings import DATABASE_URL
database = databases.Database(DATABASE_URL, force_rollback=True)
metadata = sqlalchemy.MetaData()
class Company(ormar.Model):
class Meta:
tablename = "companies"
metadata = metadata
database = database
id: ormar.Integer(primary_key=True)
name: ormar.String(max_length=100)
founded: ormar.Integer(nullable=True)
class Car(ormar.Model):
class Meta:
tablename = "cars"
metadata = metadata
database = database
id: ormar.Integer(primary_key=True)
manufacturer: ormar.ForeignKey(Company)
name: ormar.String(max_length=100)
year: ormar.Integer(nullable=True)
gearbox_type: ormar.String(max_length=20, nullable=True)
gears: ormar.Integer(nullable=True)
aircon_type: ormar.String(max_length=20, nullable=True)
# build some sample data
toyota = await Company.objects.create(name="Toyota", founded=1937)
await Car.objects.create(manufacturer=toyota, name="Corolla", year=2020, gearbox_type='Manual', gears=5,
aircon_type='Manual')
await Car.objects.create(manufacturer=toyota, name="Yaris", year=2019, gearbox_type='Manual', gears=5,
aircon_type='Manual')
await Car.objects.create(manufacturer=toyota, name="Supreme", year=2020, gearbox_type='Auto', gears=6,
aircon_type='Auto')
# select manufacturer but only name - to include related models use notation {model_name}__{column}
all_cars = await Car.objects.select_related('manufacturer').fields(['id', 'name', 'company__name']).all()
for car in all_cars:
# excluded columns will yield None
assert all(getattr(car, x) is None for x in ['year', 'gearbox_type', 'gears', 'aircon_type'])
# included column on related models will be available, pk column is always included
# even if you do not include it in fields list
assert car.manufacturer.name == 'Toyota'
# also in the nested related models - you cannot exclude pk - it's always auto added
assert car.manufacturer.founded is None
# fields() can be called several times, building up the columns to select
# models selected in select_related but with no columns in fields list implies all fields
all_cars = await Car.objects.select_related('manufacturer').fields('id').fields(
['name']).all()
# all fiels from company model are selected
assert all_cars[0].manufacturer.name == 'Toyota'
assert all_cars[0].manufacturer.founded == 1937
# cannot exclude mandatory model columns - company__name in this example
await Car.objects.select_related('manufacturer').fields(['id', 'name', 'company__founded']).all()
# will raise pydantic ValidationError as company.name is required
```
## Data types
The following keyword arguments are supported on all field types.
* `primary_key`
* `nullable`
* `default`
* `server_default`
* `index`
* `unique`
## Model Fields
### Common parameters
* `primary_key: bool`
* `nullable: bool`
* `default: Any`
* `server_default: Any`
* `index: bool`
* `unique: bool`
* `choices: typing.Sequence`
All fields are required unless one of the following is set:
* `nullable` - Creates a nullable column. Sets the default to `None`.
* `default` - Set a default value for the field.
* `server_default` - Set a default value for the field on server side (like sqlalchemy's `func.now()`).
* `primary key` - Set a primary key on a column.
* `autoincrement` - When a column is set to primary key and autoincrement is set on this column.
Autoincrement is set by default on int primary keys.
* `primary key` with `autoincrement` - When a column is set to primary key and autoincrement is set on this column.
Autoincrement is set by default on int primary keys.
### Fields Types
* `String(length)`
Available Model Fields (with required args - optional ones in docs):
* `String(max_length)`
* `Text()`
* `Boolean()`
* `Integer()`
@ -203,7 +517,10 @@ All fields are required unless one of the following is set:
* `DateTime()`
* `JSON()`
* `BigInteger()`
* `Decimal(lenght, precision)`
* `Decimal(scale, precision)`
* `UUID()`
* `ForeignKey(to)`
* `Many2Many(to, through)`
[sqlalchemy-core]: https://docs.sqlalchemy.org/en/latest/core/
[databases]: https://github.com/encode/databases

View File

@ -21,7 +21,7 @@ Each table **has to** have a primary key column, which you specify by setting `p
Only one primary key column is allowed.
```Python hl_lines="14 15 16"
```Python hl_lines="15 16 17"
--8<-- "../docs_src/models/docs001.py"
```
@ -34,7 +34,7 @@ By default if you assign primary key to `Integer` field, the `autoincrement` opt
You can disable by passing `autoincremant=False`.
```Python
id = ormar.Integer(primary_key=True, autoincrement=False)
id: ormar.Integer(primary_key=True, autoincrement=False)
```
Names of the fields will be used for both the underlying `pydantic` model and `sqlalchemy` table.
@ -48,9 +48,9 @@ and table creation you need to assign each `Model` with two special parameters.
One is `Database` instance created with your database url in [sqlalchemy connection string][sqlalchemy connection string] format.
Created instance needs to be passed to every `Model` with `__database__` parameter.
Created instance needs to be passed to every `Model` with `Meta` class `database` parameter.
```Python hl_lines="1 6 11"
```Python hl_lines="1 6 12"
--8<-- "../docs_src/models/docs001.py"
```
@ -62,9 +62,9 @@ Created instance needs to be passed to every `Model` with `__database__` paramet
Second dependency is sqlalchemy `MetaData` instance.
Created instance needs to be passed to every `Model` with `__metadata__` parameter.
Created instance needs to be passed to every `Model` with `Meta` class `metadata` parameter.
```Python hl_lines="2 7 12"
```Python hl_lines="2 7 13"
--8<-- "../docs_src/models/docs001.py"
```
@ -76,9 +76,9 @@ Created instance needs to be passed to every `Model` with `__metadata__` paramet
By default table name is created from Model class name as lowercase name plus 's'.
You can overwrite this parameter by providing `__tablename__` argument.
You can overwrite this parameter by providing `Meta` class `tablename` argument.
```Python hl_lines="11 12 13"
```Python hl_lines="12 13 14"
--8<-- "../docs_src/models/docs002.py"
```
@ -91,7 +91,7 @@ There are two ways to create and persist the `Model` instance in the database.
If you plan to modify the instance in the later execution of your program you can initiate your `Model` as a normal class and later await a `save()` call.
```Python hl_lines="19 20"
```Python hl_lines="20 21"
--8<-- "../docs_src/models/docs007.py"
```
@ -99,41 +99,24 @@ If you want to initiate your `Model` and at the same time save in in the databas
Each model has a `QuerySet` initialised as `objects` parameter
```Python hl_lines="22"
```Python hl_lines="23"
--8<-- "../docs_src/models/docs007.py"
```
!!!info
To read more about `QuerySets` and available methods visit [queries][queries]
## Attributes Delegation
Each call to `Model` fields parameter under the hood is delegated to either the `pydantic` model
or other related `Model` in case of relations.
The fields and relations are not stored on the `Model` itself
```Python hl_lines="31 32 33 34 35 36 37 38 39 40 41"
--8<-- "../docs_src/models/docs006.py"
```
!!! warning
In example above model instances are created but not persisted that's why `id` of `department` is None!
!!!info
To read more about `ForeignKeys` and `Model` relations visit [relations][relations]
## Internals
Apart from special parameters defined in the `Model` during definition (tablename, metadata etc.) the `Model` provides you with useful internals.
### Pydantic Model
To access auto created pydantic model you can use `Model.__pydantic_model__` parameter
All `Model` classes inherit from `pydantic.BaseModel` so you can access all normal attributes of pydantic models.
For example to list model fields you can:
```Python hl_lines="18"
```Python hl_lines="20"
--8<-- "../docs_src/models/docs003.py"
```
@ -145,11 +128,11 @@ For example to list model fields you can:
### Sqlalchemy Table
To access auto created sqlalchemy table you can use `Model.__table__` parameter
To access auto created sqlalchemy table you can use `Model.Meta.table` parameter
For example to list table columns you can:
```Python hl_lines="18"
```Python hl_lines="20"
--8<-- "../docs_src/models/docs004.py"
```
@ -161,14 +144,26 @@ For example to list table columns you can:
### Fields Definition
To access ormar `Fields` you can use `Model.__model_fields__` parameter
To access ormar `Fields` you can use `Model.Meta.model_fields` parameter
For example to list table model fields you can:
```Python hl_lines="18"
```Python hl_lines="19"
--8<-- "../docs_src/models/docs005.py"
```
!!!info
Note that fields stored on a model are `classes` not `instances`.
So if you print just model fields you will get:
`{'id': <class 'ormar.fields.model_fields.Integer'>, `
`'name': <class 'ormar.fields.model_fields.String'>, `
`'completed': <class 'ormar.fields.model_fields.Boolean'>}`
[fields]: ./fields.md
[relations]: ./relations.md
[queries]: ./queries.md