Files
ormar/ormar/models/newbasemodel.py
2021-05-23 16:44:24 +02:00

882 lines
32 KiB
Python

import base64
import sys
import warnings
from typing import (
AbstractSet,
Any,
Callable,
Dict,
List,
Mapping,
MutableSequence,
Optional,
Set,
TYPE_CHECKING,
Tuple,
Type,
Union,
cast,
)
try:
import orjson as json
except ImportError: # pragma: no cover
import json # type: ignore
import databases
import pydantic
import sqlalchemy
from pydantic import BaseModel
import ormar # noqa I100
from ormar.exceptions import ModelError, ModelPersistenceError
from ormar.fields import BaseField
from ormar.fields.foreign_key import ForeignKeyField
from ormar.models.helpers import register_relation_in_alias_manager
from ormar.models.helpers.relations import expand_reverse_relationship
from ormar.models.helpers.sqlalchemy import (
populate_meta_sqlalchemy_table_if_required,
update_column_definition,
)
from ormar.models.metaclass import ModelMeta, ModelMetaclass
from ormar.models.modelproxy import ModelTableProxy
from ormar.queryset.utils import translate_list_to_dict
from ormar.relations.alias_manager import AliasManager
from ormar.relations.relation_manager import RelationsManager
if TYPE_CHECKING: # pragma no cover
from ormar.models import Model
from ormar.signals import SignalEmitter
IntStr = Union[int, str]
DictStrAny = Dict[str, Any]
AbstractSetIntStr = AbstractSet[IntStr]
MappingIntStrAny = Mapping[IntStr, Any]
class NewBaseModel(pydantic.BaseModel, ModelTableProxy, metaclass=ModelMetaclass):
"""
Main base class of ormar Model.
Inherits from pydantic BaseModel and has all mixins combined in ModelTableProxy.
Constructed with ModelMetaclass which in turn also inherits pydantic metaclass.
Abstracts away all internals and helper functions, so final Model class has only
the logic concerned with database connection and data persistance.
"""
__slots__ = ("_orm_id", "_orm_saved", "_orm", "_pk_column", "__pk_only__")
if TYPE_CHECKING: # pragma no cover
pk: Any
__model_fields__: Dict[str, BaseField]
__table__: sqlalchemy.Table
__fields__: Dict[str, pydantic.fields.ModelField]
__pydantic_model__: Type[BaseModel]
__pkname__: str
__tablename__: str
__metadata__: sqlalchemy.MetaData
__database__: databases.Database
_orm_relationship_manager: AliasManager
_orm: RelationsManager
_orm_id: int
_orm_saved: bool
_related_names: Optional[Set]
_through_names: Optional[Set]
_related_names_hash: str
_choices_fields: Optional[Set]
_pydantic_fields: Set
_quick_access_fields: Set
_json_fields: Set
_bytes_fields: Set
Meta: ModelMeta
# noinspection PyMissingConstructor
def __init__(self, *args: Any, **kwargs: Any) -> None: # type: ignore
"""
Initializer that creates a new ormar Model that is also pydantic Model at the
same time.
Passed keyword arguments can be only field names and their corresponding values
as those will be passed to pydantic validation that will complain if extra
params are passed.
If relations are defined each relation is expanded and children models are also
initialized and validated. Relation from both sides is registered so you can
access related models from both sides.
Json fields are automatically loaded/dumped if needed.
Models marked as abstract=True in internal Meta class cannot be initialized.
Accepts also special __pk_only__ flag that indicates that Model is constructed
only with primary key value (so no other fields, it's a child model on other
Model), that causes skipping the validation, that's the only case when the
validation can be skipped.
Accepts also special __excluded__ parameter that contains a set of fields that
should be explicitly set to None, as otherwise pydantic will try to populate
them with their default values if default is set.
:raises ModelError: if abstract model is initialized, model has ForwardRefs
that has not been updated or unknown field is passed
:param args: ignored args
:type args: Any
:param kwargs: keyword arguments - all fields values and some special params
:type kwargs: Any
"""
self._verify_model_can_be_initialized()
self._initialize_internal_attributes()
pk_only = kwargs.pop("__pk_only__", False)
object.__setattr__(self, "__pk_only__", pk_only)
new_kwargs, through_tmp_dict = self._process_kwargs(kwargs)
if not pk_only:
values, fields_set, validation_error = pydantic.validate_model(
self, new_kwargs # type: ignore
)
if validation_error:
raise validation_error
else:
fields_set = {self.Meta.pkname}
values = new_kwargs
object.__setattr__(self, "__dict__", values)
object.__setattr__(self, "__fields_set__", fields_set)
# add back through fields
new_kwargs.update(through_tmp_dict)
model_fields = object.__getattribute__(self, "Meta").model_fields
# register the columns models after initialization
for related in self.extract_related_names().union(self.extract_through_names()):
model_fields[related].expand_relationship(
new_kwargs.get(related), self, to_register=True,
)
if hasattr(self, "_init_private_attributes"):
# introduced in pydantic 1.7
self._init_private_attributes()
def __setattr__(self, name: str, value: Any) -> None: # noqa CCR001
"""
Overwrites setattr in pydantic parent as otherwise descriptors are not called.
:param name: name of the attribute to set
:type name: str
:param value: value of the attribute to set
:type value: Any
:return: None
:rtype: None
"""
if hasattr(self, name):
object.__setattr__(self, name, value)
else:
# let pydantic handle errors for unknown fields
super().__setattr__(name, value)
def __getattr__(self, item: str) -> Any:
"""
Used only to silence mypy errors for Through models and reverse relations.
Not used in real life as in practice calls are intercepted
by RelationDescriptors
:param item: name of attribute
:type item: str
:return: Any
:rtype: Any
"""
return super().__getattribute__(item)
def _internal_set(self, name: str, value: Any) -> None:
"""
Delegates call to pydantic.
:param name: name of param
:type name: str
:param value: value to set
:type value: Any
"""
super().__setattr__(name, value)
def _verify_model_can_be_initialized(self) -> None:
"""
Raises exception if model is abstract or has ForwardRefs in relation fields.
:return: None
:rtype: None
"""
if self.Meta.abstract:
raise ModelError(f"You cannot initialize abstract model {self.get_name()}")
if self.Meta.requires_ref_update:
raise ModelError(
f"Model {self.get_name()} has not updated "
f"ForwardRefs. \nBefore using the model you "
f"need to call update_forward_refs()."
)
def _process_kwargs(self, kwargs: Dict) -> Tuple[Dict, Dict]:
"""
Initializes nested models.
Removes property_fields
Checks if field is in the model fields or pydatnic fields.
Nullifies fields that should be excluded.
Extracts through models from kwargs into temporary dict.
:param kwargs: passed to init keyword arguments
:type kwargs: Dict
:return: modified kwargs
:rtype: Tuple[Dict, Dict]
"""
property_fields = self.Meta.property_fields
model_fields = self.Meta.model_fields
pydantic_fields = set(self.__fields__.keys())
# remove property fields
for prop_filed in property_fields:
kwargs.pop(prop_filed, None)
excluded: Set[str] = kwargs.pop("__excluded__", set())
if "pk" in kwargs:
kwargs[self.Meta.pkname] = kwargs.pop("pk")
# extract through fields
through_tmp_dict = dict()
for field_name in self.extract_through_names():
through_tmp_dict[field_name] = kwargs.pop(field_name, None)
try:
new_kwargs: Dict[str, Any] = {
k: self._convert_to_bytes(
k,
self._convert_json(
k,
model_fields[k].expand_relationship(v, self, to_register=False,)
if k in model_fields
else (v if k in pydantic_fields else model_fields[k]),
),
)
for k, v in kwargs.items()
}
except KeyError as e:
raise ModelError(
f"Unknown field '{e.args[0]}' for model {self.get_name(lower=False)}"
)
# explicitly set None to excluded fields
# as pydantic populates them with default if set
for field_to_nullify in excluded:
new_kwargs[field_to_nullify] = None
return new_kwargs, through_tmp_dict
def _initialize_internal_attributes(self) -> None:
"""
Initializes internal attributes during __init__()
:rtype: None
"""
# object.__setattr__(self, "_orm_id", uuid.uuid4().hex)
object.__setattr__(self, "_orm_saved", False)
object.__setattr__(self, "_pk_column", None)
object.__setattr__(
self,
"_orm",
RelationsManager(
related_fields=self.extract_related_fields(), owner=cast("Model", self),
),
)
def __eq__(self, other: object) -> bool:
"""
Compares other model to this model. when == is called.
:param other: other model to compare
:type other: object
:return: result of comparison
:rtype: bool
"""
if isinstance(other, NewBaseModel):
return self.__same__(other)
return super().__eq__(other) # pragma no cover
def __same__(self, other: "NewBaseModel") -> bool:
"""
Used by __eq__, compares other model to this model.
Compares:
* _orm_ids,
* primary key values if it's set
* dictionary of own fields (excluding relations)
:param other: model to compare to
:type other: NewBaseModel
:return: result of comparison
:rtype: bool
"""
return (
# self._orm_id == other._orm_id
(self.pk == other.pk and self.pk is not None)
or (
(self.pk is None and other.pk is None)
and {
k: v
for k, v in self.__dict__.items()
if k not in self.extract_related_names()
}
== {
k: v
for k, v in other.__dict__.items()
if k not in other.extract_related_names()
}
)
)
@classmethod
def get_name(cls, lower: bool = True) -> str:
"""
Returns name of the Model class, by default lowercase.
:param lower: flag if name should be set to lowercase
:type lower: bool
:return: name of the model
:rtype: str
"""
name = cls.__name__
if lower:
name = name.lower()
return name
@property
def pk_column(self) -> sqlalchemy.Column:
"""
Retrieves primary key sqlalchemy column from models Meta.table.
Each model has to have primary key.
Only one primary key column is allowed.
:return: primary key sqlalchemy column
:rtype: sqlalchemy.Column
"""
if object.__getattribute__(self, "_pk_column") is not None:
return object.__getattribute__(self, "_pk_column")
pk_columns = self.Meta.table.primary_key.columns.values()
pk_col = pk_columns[0]
object.__setattr__(self, "_pk_column", pk_col)
return pk_col
@property
def saved(self) -> bool:
"""Saved status of the model. Changed by setattr and loading from db"""
return self._orm_saved
@property
def signals(self) -> "SignalEmitter":
"""Exposes signals from model Meta"""
return self.Meta.signals
@classmethod
def pk_type(cls) -> Any:
"""Shortcut to models primary key field type"""
return cls.Meta.model_fields[cls.Meta.pkname].__type__
@classmethod
def db_backend_name(cls) -> str:
"""Shortcut to database dialect,
cause some dialect require different treatment"""
return cls.Meta.database._backend._dialect.name
def remove(self, parent: "Model", name: str) -> None:
"""Removes child from relation with given name in RelationshipManager"""
self._orm.remove_parent(self, parent, name)
def set_save_status(self, status: bool) -> None:
"""Sets value of the save status"""
object.__setattr__(self, "_orm_saved", status)
@classmethod
def get_properties(
cls, include: Union[Set, Dict, None], exclude: Union[Set, Dict, None]
) -> Set[str]:
"""
Returns a set of names of functions/fields decorated with
@property_field decorator.
They are added to dictionary when called directly and therefore also are
present in fastapi responses.
:param include: fields to include
:type include: Union[Set, Dict, None]
:param exclude: fields to exclude
:type exclude: Union[Set, Dict, None]
:return: set of property fields names
:rtype: Set[str]
"""
props = cls.Meta.property_fields
if include:
props = {prop for prop in props if prop in include}
if exclude:
props = {prop for prop in props if prop not in exclude}
return props
@classmethod
def update_forward_refs(cls, **localns: Any) -> None:
"""
Processes fields that are ForwardRef and need to be evaluated into actual
models.
Expands relationships, register relation in alias manager and substitutes
sqlalchemy columns with new ones with proper column type (null before).
Populates Meta table of the Model which is left empty before.
Sets self_reference flag on models that links to themselves.
Calls the pydantic method to evaluate pydantic fields.
:param localns: local namespace
:type localns: Any
:return: None
:rtype: None
"""
globalns = sys.modules[cls.__module__].__dict__.copy()
globalns.setdefault(cls.__name__, cls)
fields_to_check = cls.Meta.model_fields.copy()
for field in fields_to_check.values():
if field.has_unresolved_forward_refs():
field = cast(ForeignKeyField, field)
field.evaluate_forward_ref(globalns=globalns, localns=localns)
field.set_self_reference_flag()
expand_reverse_relationship(model_field=field)
register_relation_in_alias_manager(field=field)
update_column_definition(model=cls, field=field)
populate_meta_sqlalchemy_table_if_required(meta=cls.Meta)
super().update_forward_refs(**localns)
cls.Meta.requires_ref_update = False
@staticmethod
def _get_not_excluded_fields(
fields: Union[List, Set], include: Optional[Dict], exclude: Optional[Dict],
) -> List:
"""
Returns related field names applying on them include and exclude set.
:param include: fields to include
:type include: Union[Set, Dict, None]
:param exclude: fields to exclude
:type exclude: Union[Set, Dict, None]
:return:
:rtype: List of fields with relations that is not excluded
"""
fields = [*fields] if not isinstance(fields, list) else fields
if include:
fields = [field for field in fields if field in include]
if exclude:
fields = [
field
for field in fields
if field not in exclude
or (
exclude.get(field) is not Ellipsis
and exclude.get(field) != {"__all__"}
)
]
return fields
@staticmethod
def _extract_nested_models_from_list(
relation_map: Dict,
models: MutableSequence,
include: Union[Set, Dict, None],
exclude: Union[Set, Dict, None],
exclude_primary_keys: bool,
exclude_through_models: bool,
) -> List:
"""
Converts list of models into list of dictionaries.
:param models: List of models
:type models: List
:param include: fields to include
:type include: Union[Set, Dict, None]
:param exclude: fields to exclude
:type exclude: Union[Set, Dict, None]
:return: list of models converted to dictionaries
:rtype: List[Dict]
"""
result = []
for model in models:
try:
result.append(
model.dict(
relation_map=relation_map,
include=include,
exclude=exclude,
exclude_primary_keys=exclude_primary_keys,
exclude_through_models=exclude_through_models,
)
)
except ReferenceError: # pragma no cover
continue
return result
@classmethod
def _skip_ellipsis(
cls, items: Union[Set, Dict, None], key: str, default_return: Any = None
) -> Union[Set, Dict, None]:
"""
Helper to traverse the include/exclude dictionaries.
In dict() Ellipsis should be skipped as it indicates all fields required
and not the actual set/dict with fields names.
:param items: current include/exclude value
:type items: Union[Set, Dict, None]
:param key: key for nested relations to check
:type key: str
:return: nested value of the items
:rtype: Union[Set, Dict, None]
"""
result = cls.get_child(items, key)
return result if result is not Ellipsis else default_return
@staticmethod
def _convert_all(items: Union[Set, Dict, None]) -> Union[Set, Dict, None]:
"""
Helper to convert __all__ pydantic special index to ormar which does not
support index based exclusions.
:param items: current include/exclude value
:type items: Union[Set, Dict, None]
"""
if isinstance(items, dict) and "__all__" in items:
return items.get("__all__")
return items
def _extract_nested_models( # noqa: CCR001
self,
relation_map: Dict,
dict_instance: Dict,
include: Optional[Dict],
exclude: Optional[Dict],
exclude_primary_keys: bool,
exclude_through_models: bool,
) -> Dict:
"""
Traverse nested models and converts them into dictionaries.
Calls itself recursively if needed.
:param nested: flag if current instance is nested
:type nested: bool
:param dict_instance: current instance dict
:type dict_instance: Dict
:param include: fields to include
:type include: Optional[Dict]
:param exclude: fields to exclude
:type exclude: Optional[Dict]
:return: current model dict with child models converted to dictionaries
:rtype: Dict
"""
fields = self._get_not_excluded_fields(
fields=self.extract_related_names(), include=include, exclude=exclude
)
for field in fields:
if not relation_map or field not in relation_map:
continue
try:
nested_model = getattr(self, field)
if isinstance(nested_model, MutableSequence):
dict_instance[field] = self._extract_nested_models_from_list(
relation_map=self._skip_ellipsis( # type: ignore
relation_map, field, default_return=dict()
),
models=nested_model,
include=self._convert_all(self._skip_ellipsis(include, field)),
exclude=self._convert_all(self._skip_ellipsis(exclude, field)),
exclude_primary_keys=exclude_primary_keys,
exclude_through_models=exclude_through_models,
)
elif nested_model is not None:
dict_instance[field] = nested_model.dict(
relation_map=self._skip_ellipsis(
relation_map, field, default_return=dict()
),
include=self._convert_all(self._skip_ellipsis(include, field)),
exclude=self._convert_all(self._skip_ellipsis(exclude, field)),
exclude_primary_keys=exclude_primary_keys,
exclude_through_models=exclude_through_models,
)
else:
dict_instance[field] = None
except ReferenceError:
dict_instance[field] = None
return dict_instance
def dict( # type: ignore # noqa A003
self,
*,
include: Union[Set, Dict] = None,
exclude: Union[Set, Dict] = None,
by_alias: bool = False,
skip_defaults: bool = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
exclude_primary_keys: bool = False,
exclude_through_models: bool = False,
relation_map: Dict = None,
) -> "DictStrAny": # noqa: A003'
"""
Generate a dictionary representation of the model,
optionally specifying which fields to include or exclude.
Nested models are also parsed to dictionaries.
Additionally fields decorated with @property_field are also added.
:param exclude_through_models: flag to exclude through models from dict
:type exclude_through_models: bool
:param exclude_primary_keys: flag to exclude primary keys from dict
:type exclude_primary_keys: bool
:param include: fields to include
:type include: Union[Set, Dict, None]
:param exclude: fields to exclude
:type exclude: Union[Set, Dict, None]
:param by_alias: flag to get values by alias - passed to pydantic
:type by_alias: bool
:param skip_defaults: flag to not set values - passed to pydantic
:type skip_defaults: bool
:param exclude_unset: flag to exclude not set values - passed to pydantic
:type exclude_unset: bool
:param exclude_defaults: flag to exclude default values - passed to pydantic
:type exclude_defaults: bool
:param exclude_none: flag to exclude None values - passed to pydantic
:type exclude_none: bool
:param relation_map: map of the relations to follow to avoid circural deps
:type relation_map: Dict
:return:
:rtype:
"""
pydantic_exclude = self._update_excluded_with_related(exclude)
pydantic_exclude = self._update_excluded_with_pks_and_through(
exclude=pydantic_exclude,
exclude_primary_keys=exclude_primary_keys,
exclude_through_models=exclude_through_models,
)
dict_instance = super().dict(
include=include,
exclude=pydantic_exclude,
by_alias=by_alias,
skip_defaults=skip_defaults,
exclude_unset=exclude_unset,
exclude_defaults=exclude_defaults,
exclude_none=exclude_none,
)
dict_instance = {
k: self._convert_bytes_to_str(column_name=k, value=v)
for k, v in dict_instance.items()
}
if include and isinstance(include, Set):
include = translate_list_to_dict(include)
if exclude and isinstance(exclude, Set):
exclude = translate_list_to_dict(exclude)
relation_map = (
relation_map
if relation_map is not None
else translate_list_to_dict(self._iterate_related_models())
)
pk_only = getattr(self, "__pk_only__", False)
if relation_map and not pk_only:
dict_instance = self._extract_nested_models(
relation_map=relation_map,
dict_instance=dict_instance,
include=include, # type: ignore
exclude=exclude, # type: ignore
exclude_primary_keys=exclude_primary_keys,
exclude_through_models=exclude_through_models,
)
# include model properties as fields in dict
if object.__getattribute__(self, "Meta").property_fields:
props = self.get_properties(include=include, exclude=exclude)
if props:
dict_instance.update({prop: getattr(self, prop) for prop in props})
return dict_instance
def json( # type: ignore # noqa A003
self,
*,
include: Union[Set, Dict] = None,
exclude: Union[Set, Dict] = None,
by_alias: bool = False,
skip_defaults: bool = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Optional[Callable[[Any], Any]] = None,
exclude_primary_keys: bool = False,
exclude_through_models: bool = False,
**dumps_kwargs: Any,
) -> str:
"""
Generate a JSON representation of the model, `include` and `exclude`
arguments as per `dict()`.
`encoder` is an optional function to supply as `default` to json.dumps(),
other arguments as per `json.dumps()`.
"""
if skip_defaults is not None: # pragma: no cover
warnings.warn(
f'{self.__class__.__name__}.json(): "skip_defaults" is deprecated '
f'and replaced by "exclude_unset"',
DeprecationWarning,
)
exclude_unset = skip_defaults
encoder = cast(Callable[[Any], Any], encoder or self.__json_encoder__)
data = self.dict(
include=include,
exclude=exclude,
by_alias=by_alias,
exclude_unset=exclude_unset,
exclude_defaults=exclude_defaults,
exclude_none=exclude_none,
exclude_primary_keys=exclude_primary_keys,
exclude_through_models=exclude_through_models,
)
if self.__custom_root_type__: # pragma: no cover
data = data["__root__"]
return self.__config__.json_dumps(data, default=encoder, **dumps_kwargs)
def update_from_dict(self, value_dict: Dict) -> "NewBaseModel":
"""
Updates self with values of fields passed in the dictionary.
:param value_dict: dictionary of fields names and values
:type value_dict: Dict
:return: self
:rtype: NewBaseModel
"""
for key, value in value_dict.items():
setattr(self, key, value)
return self
def _convert_to_bytes(self, column_name: str, value: Any) -> Union[str, Dict]:
"""
Converts value to bytes from string
:param column_name: name of the field
:type column_name: str
:param value: value fo the field
:type value: Any
:return: converted value if needed, else original value
:rtype: Any
"""
if column_name not in self._bytes_fields:
return value
field = self.Meta.model_fields[column_name]
if not isinstance(value, bytes):
if field.represent_as_base64_str:
value = base64.b64decode(value)
else:
value = value.encode("utf-8")
return value
def _convert_bytes_to_str(self, column_name: str, value: Any) -> Union[str, Dict]:
"""
Converts value to str from bytes for represent_as_base64_str columns.
:param column_name: name of the field
:type column_name: str
:param value: value fo the field
:type value: Any
:return: converted value if needed, else original value
:rtype: Any
"""
if column_name not in self._bytes_fields:
return value
field = self.Meta.model_fields[column_name]
if not isinstance(value, str) and field.represent_as_base64_str:
return base64.b64encode(value).decode()
return value
def _convert_json(self, column_name: str, value: Any) -> Union[str, Dict]:
"""
Converts value to/from json if needed (for Json columns).
:param column_name: name of the field
:type column_name: str
:param value: value fo the field
:type value: Any
:return: converted value if needed, else original value
:rtype: Any
"""
if column_name not in self._json_fields:
return value
if not isinstance(value, str):
try:
value = json.dumps(value)
except TypeError: # pragma no cover
pass
return value.decode("utf-8") if isinstance(value, bytes) else value
def _extract_own_model_fields(self) -> Dict:
"""
Returns a dictionary with field names and values for fields that are not
relations fields (ForeignKey, ManyToMany etc.)
:return: dictionary of fields names and values.
:rtype: Dict
"""
related_names = self.extract_related_names()
self_fields = {k: v for k, v in self.__dict__.items() if k not in related_names}
return self_fields
def _extract_model_db_fields(self) -> Dict:
"""
Returns a dictionary with field names and values for fields that are stored in
current model's table.
That includes own non-relational fields ang foreign key fields.
:return: dictionary of fields names and values.
:rtype: Dict
"""
self_fields = self._extract_own_model_fields()
self_fields = {
k: v
for k, v in self_fields.items()
if self.get_column_alias(k) in self.Meta.table.columns
}
for field in self._extract_db_related_names():
relation_field = self.Meta.model_fields[field]
target_pk_name = relation_field.to.Meta.pkname
target_field = getattr(self, field)
self_fields[field] = getattr(target_field, target_pk_name, None)
if not relation_field.nullable and not self_fields[field]:
raise ModelPersistenceError(
f"You cannot save {relation_field.to.get_name()} "
f"model without pk set!"
)
return self_fields
def get_relation_model_id(self, target_field: "BaseField") -> Optional[int]:
"""
Returns an id of the relation side model to use in prefetch query.
:param target_field: field with relation definition
:type target_field: "BaseField"
:return: value of pk if set
:rtype: Optional[int]
"""
if target_field.virtual or target_field.is_multi:
return self.pk
related_name = target_field.name
related_model = getattr(self, related_name)
return None if not related_model else related_model.pk