* Add benchmarking test suite * Improve amortized time of model relation loads with a large number of rows * Improve performance of loading models with many related models * Improve performance of loading models with many related models to O(N)ish * Fix bug where N model creation with shared related model would build in N^2 time * Lower blocking time for queryset results * Add docstrings and streamline hash code Co-authored-by: haydeec1 <Eric.Haydel@jhuapl.edu>
66 lines
1.7 KiB
Python
66 lines
1.7 KiB
Python
import random
|
|
import string
|
|
|
|
import pytest
|
|
|
|
from benchmarks.conftest import Author, Book, Publisher
|
|
|
|
pytestmark = pytest.mark.asyncio
|
|
|
|
|
|
@pytest.mark.parametrize("num_models", [10, 20, 40])
|
|
async def test_saving_models_individually(aio_benchmark, num_models: int):
|
|
@aio_benchmark
|
|
async def make_and_insert(num_models: int):
|
|
authors = [
|
|
Author(
|
|
name="".join(random.sample(string.ascii_letters, 5)),
|
|
score=random.random() * 100,
|
|
)
|
|
for i in range(0, num_models)
|
|
]
|
|
assert len(authors) == num_models
|
|
|
|
ids = []
|
|
for author in authors:
|
|
a = await author.save()
|
|
ids.append(a)
|
|
return ids
|
|
|
|
ids = make_and_insert(num_models)
|
|
for id in ids:
|
|
assert id is not None
|
|
|
|
|
|
@pytest.mark.parametrize("num_models", [10, 20, 40])
|
|
async def test_saving_models_individually_with_related_models(
|
|
aio_benchmark, num_models: int, author: Author, publisher: Publisher
|
|
):
|
|
@aio_benchmark
|
|
async def making_and_inserting_related_models_one_by_one(
|
|
author: Author, publisher: Publisher, num_models: int
|
|
):
|
|
books = [
|
|
Book(
|
|
author=author,
|
|
publisher=publisher,
|
|
title="".join(random.sample(string.ascii_letters, 5)),
|
|
year=random.randint(0, 2000),
|
|
)
|
|
for i in range(0, num_models)
|
|
]
|
|
|
|
ids = []
|
|
for book in books:
|
|
await book.save()
|
|
ids.append(book.id)
|
|
|
|
return ids
|
|
|
|
ids = making_and_inserting_related_models_one_by_one(
|
|
author=author, publisher=publisher, num_models=num_models
|
|
)
|
|
|
|
for id in ids:
|
|
assert id is not None
|