add examples to openapi schema, some perf improvements
This commit is contained in:
@ -16,6 +16,9 @@
|
||||
|
||||
If none of the above `ormar` (or rather pydantic) will fail during loading data from the database,
|
||||
with missing required value for declared pydantic field.
|
||||
* Ormar provides now a meaningful examples in openapi schema, including nested models.
|
||||
The same algorithm is used to iterate related models without looks
|
||||
as with `dict()` and `select/load_all`. Examples appear also in `fastapi`. [#157](https://github.com/collerek/ormar/issues/157)
|
||||
|
||||
## 🐛 Fixes
|
||||
|
||||
@ -26,7 +29,9 @@
|
||||
## 💬 Other
|
||||
|
||||
* Add connecting to the database in QuickStart in readme [#180](https://github.com/collerek/ormar/issues/180)
|
||||
|
||||
* OpenAPI schema does no longer include `ormar.Model` docstring as description,
|
||||
instead just model name is provided if you do not provide your own docstring.
|
||||
* Some performance improvements.
|
||||
|
||||
# 0.10.5
|
||||
|
||||
|
||||
@ -76,7 +76,7 @@ class UndefinedType: # pragma no cover
|
||||
|
||||
Undefined = UndefinedType()
|
||||
|
||||
__version__ = "0.10.5"
|
||||
__version__ = "0.10.6"
|
||||
__all__ = [
|
||||
"Integer",
|
||||
"BigInteger",
|
||||
|
||||
@ -31,6 +31,7 @@ class BaseField(FieldInfo):
|
||||
|
||||
def __init__(self, **kwargs: Any) -> None:
|
||||
self.__type__: type = kwargs.pop("__type__", None)
|
||||
self.__sample__: type = kwargs.pop("__sample__", None)
|
||||
self.related_name = kwargs.pop("related_name", None)
|
||||
|
||||
self.column_type: sqlalchemy.Column = kwargs.pop("column_type", None)
|
||||
|
||||
@ -80,7 +80,7 @@ def create_dummy_model(
|
||||
:rtype: pydantic.BaseModel
|
||||
"""
|
||||
alias = (
|
||||
"".join(choices(string.ascii_uppercase, k=2)) + uuid.uuid4().hex[:4]
|
||||
"".join(choices(string.ascii_uppercase, k=6)) # + uuid.uuid4().hex[:4]
|
||||
).lower()
|
||||
fields = {f"{pk_field.name}": (pk_field.__type__, None)}
|
||||
|
||||
|
||||
@ -62,6 +62,7 @@ class ModelFieldFactory:
|
||||
|
||||
_bases: Any = (BaseField,)
|
||||
_type: Any = None
|
||||
_sample: Any = None
|
||||
|
||||
def __new__(cls, *args: Any, **kwargs: Any) -> BaseField: # type: ignore
|
||||
cls.validate(**kwargs)
|
||||
@ -80,6 +81,7 @@ class ModelFieldFactory:
|
||||
|
||||
namespace = dict(
|
||||
__type__=cls._type,
|
||||
__sample__=cls._sample,
|
||||
alias=kwargs.pop("name", None),
|
||||
name=None,
|
||||
primary_key=primary_key,
|
||||
@ -129,6 +131,7 @@ class String(ModelFieldFactory, str):
|
||||
"""
|
||||
|
||||
_type = str
|
||||
_sample = "string"
|
||||
|
||||
def __new__( # type: ignore # noqa CFQ002
|
||||
cls,
|
||||
@ -185,6 +188,7 @@ class Integer(ModelFieldFactory, int):
|
||||
"""
|
||||
|
||||
_type = int
|
||||
_sample = 0
|
||||
|
||||
def __new__( # type: ignore
|
||||
cls,
|
||||
@ -232,6 +236,7 @@ class Text(ModelFieldFactory, str):
|
||||
"""
|
||||
|
||||
_type = str
|
||||
_sample = "text"
|
||||
|
||||
def __new__( # type: ignore
|
||||
cls, *, allow_blank: bool = True, strip_whitespace: bool = False, **kwargs: Any
|
||||
@ -267,6 +272,7 @@ class Float(ModelFieldFactory, float):
|
||||
"""
|
||||
|
||||
_type = float
|
||||
_sample = 0.0
|
||||
|
||||
def __new__( # type: ignore
|
||||
cls,
|
||||
@ -316,6 +322,7 @@ else:
|
||||
"""
|
||||
|
||||
_type = bool
|
||||
_sample = True
|
||||
|
||||
@classmethod
|
||||
def get_column_type(cls, **kwargs: Any) -> Any:
|
||||
@ -337,6 +344,7 @@ class DateTime(ModelFieldFactory, datetime.datetime):
|
||||
"""
|
||||
|
||||
_type = datetime.datetime
|
||||
_sample = "datetime"
|
||||
|
||||
@classmethod
|
||||
def get_column_type(cls, **kwargs: Any) -> Any:
|
||||
@ -358,6 +366,7 @@ class Date(ModelFieldFactory, datetime.date):
|
||||
"""
|
||||
|
||||
_type = datetime.date
|
||||
_sample = "date"
|
||||
|
||||
@classmethod
|
||||
def get_column_type(cls, **kwargs: Any) -> Any:
|
||||
@ -379,6 +388,7 @@ class Time(ModelFieldFactory, datetime.time):
|
||||
"""
|
||||
|
||||
_type = datetime.time
|
||||
_sample = "time"
|
||||
|
||||
@classmethod
|
||||
def get_column_type(cls, **kwargs: Any) -> Any:
|
||||
@ -400,6 +410,7 @@ class JSON(ModelFieldFactory, pydantic.Json):
|
||||
"""
|
||||
|
||||
_type = pydantic.Json
|
||||
_sample = '{"json": "json"}'
|
||||
|
||||
@classmethod
|
||||
def get_column_type(cls, **kwargs: Any) -> Any:
|
||||
@ -421,6 +432,7 @@ class LargeBinary(ModelFieldFactory, bytes):
|
||||
"""
|
||||
|
||||
_type = bytes
|
||||
_sample = "bytes"
|
||||
|
||||
def __new__( # type: ignore # noqa CFQ002
|
||||
cls, *, max_length: int = None, **kwargs: Any
|
||||
@ -468,6 +480,7 @@ class BigInteger(Integer, int):
|
||||
"""
|
||||
|
||||
_type = int
|
||||
_sample = 0
|
||||
|
||||
def __new__( # type: ignore
|
||||
cls,
|
||||
@ -515,6 +528,7 @@ class Decimal(ModelFieldFactory, decimal.Decimal):
|
||||
"""
|
||||
|
||||
_type = decimal.Decimal
|
||||
_sample = 0.0
|
||||
|
||||
def __new__( # type: ignore # noqa CFQ002
|
||||
cls,
|
||||
@ -587,6 +601,7 @@ class UUID(ModelFieldFactory, uuid.UUID):
|
||||
"""
|
||||
|
||||
_type = uuid.UUID
|
||||
_sample = "uuid"
|
||||
|
||||
def __new__( # type: ignore # noqa CFQ002
|
||||
cls, *, uuid_format: str = "hex", **kwargs: Any
|
||||
|
||||
@ -3,6 +3,7 @@ import itertools
|
||||
import sqlite3
|
||||
from typing import Any, Dict, List, TYPE_CHECKING, Tuple, Type
|
||||
|
||||
import pydantic
|
||||
from pydantic.typing import ForwardRef
|
||||
import ormar # noqa: I100
|
||||
from ormar.models.helpers.pydantic import populate_pydantic_default_values
|
||||
@ -61,6 +62,12 @@ def populate_default_options_values(
|
||||
else:
|
||||
new_model.Meta.requires_ref_update = False
|
||||
|
||||
new_model._json_fields = {
|
||||
name
|
||||
for name, field in new_model.Meta.model_fields.items()
|
||||
if field.__type__ == pydantic.Json
|
||||
}
|
||||
|
||||
|
||||
class Connection(sqlite3.Connection):
|
||||
def __init__(self, *args: Any, **kwargs: Any) -> None: # pragma: no cover
|
||||
|
||||
@ -15,6 +15,7 @@ from pydantic.main import SchemaExtraCallable
|
||||
import ormar # noqa: I100, I202
|
||||
from ormar.fields import BaseField
|
||||
from ormar.models.helpers.models import meta_field_not_set
|
||||
from ormar.queryset.utils import translate_list_to_dict
|
||||
|
||||
if TYPE_CHECKING: # pragma no cover
|
||||
from ormar import Model
|
||||
@ -116,12 +117,45 @@ def choices_validator(cls: Type["Model"], values: Dict[str, Any]) -> Dict[str, A
|
||||
return values
|
||||
|
||||
|
||||
def generate_model_example(model: Type["Model"], relation_map: Dict = None) -> Dict:
|
||||
"""
|
||||
Generates example to be included in schema in fastapi.
|
||||
|
||||
:param model: ormar.Model
|
||||
:type model: Type["Model"]
|
||||
:param relation_map: dict with relations to follow
|
||||
:type relation_map: Optional[Dict]
|
||||
:return:
|
||||
:rtype: Dict[str, int]
|
||||
"""
|
||||
example: Dict[str, Any] = dict()
|
||||
relation_map = (
|
||||
relation_map
|
||||
if relation_map is not None
|
||||
else translate_list_to_dict(model._iterate_related_models())
|
||||
)
|
||||
for name, field in model.Meta.model_fields.items():
|
||||
if not field.is_relation:
|
||||
example[name] = field.__sample__
|
||||
elif isinstance(relation_map, dict) and name in relation_map:
|
||||
value = generate_model_example(
|
||||
field.to, relation_map=relation_map.get(name, {})
|
||||
)
|
||||
new_value = [value] if field.is_multi or field.virtual else value
|
||||
example[name] = new_value
|
||||
|
||||
return example
|
||||
|
||||
|
||||
def construct_modify_schema_function(fields_with_choices: List) -> SchemaExtraCallable:
|
||||
"""
|
||||
Modifies the schema to include fields with choices validator.
|
||||
Those fields will be displayed in schema as Enum types with available choices
|
||||
values listed next to them.
|
||||
|
||||
Note that schema extra has to be a function, otherwise it's called to soon
|
||||
before all the relations are expanded.
|
||||
|
||||
:param fields_with_choices: list of fields with choices validation
|
||||
:type fields_with_choices: List
|
||||
:return: callable that will be run by pydantic to modify the schema
|
||||
@ -133,6 +167,28 @@ def construct_modify_schema_function(fields_with_choices: List) -> SchemaExtraCa
|
||||
if field_id in fields_with_choices:
|
||||
prop["enum"] = list(model.Meta.model_fields[field_id].choices)
|
||||
prop["description"] = prop.get("description", "") + "An enumeration."
|
||||
schema["example"] = generate_model_example(model=model)
|
||||
if "Main base class of ormar Model." in schema.get("description", ""):
|
||||
schema["description"] = f"{model.__name__}"
|
||||
|
||||
return staticmethod(schema_extra) # type: ignore
|
||||
|
||||
|
||||
def construct_schema_function_without_choices() -> SchemaExtraCallable:
|
||||
"""
|
||||
Modifies model example and description if needed.
|
||||
|
||||
Note that schema extra has to be a function, otherwise it's called to soon
|
||||
before all the relations are expanded.
|
||||
|
||||
:return: callable that will be run by pydantic to modify the schema
|
||||
:rtype: Callable
|
||||
"""
|
||||
|
||||
def schema_extra(schema: Dict[str, Any], model: Type["Model"]) -> None:
|
||||
schema["example"] = generate_model_example(model=model)
|
||||
if "Main base class of ormar Model." in schema.get("description", ""):
|
||||
schema["description"] = f"{model.__name__}"
|
||||
|
||||
return staticmethod(schema_extra) # type: ignore
|
||||
|
||||
@ -162,3 +218,5 @@ def populate_choices_validators(model: Type["Model"]) -> None: # noqa CCR001
|
||||
model.Config.schema_extra = construct_modify_schema_function(
|
||||
fields_with_choices=fields_with_choices
|
||||
)
|
||||
else:
|
||||
model.Config.schema_extra = construct_schema_function_without_choices()
|
||||
|
||||
@ -94,6 +94,7 @@ def add_cached_properties(new_model: Type["Model"]) -> None:
|
||||
new_model._related_fields = None
|
||||
new_model._pydantic_fields = {name for name in new_model.__fields__}
|
||||
new_model._choices_fields = set()
|
||||
new_model._json_fields = set()
|
||||
|
||||
|
||||
def add_property_fields(new_model: Type["Model"], attrs: Dict) -> None: # noqa: CCR001
|
||||
|
||||
@ -48,7 +48,7 @@ class RelationMixin:
|
||||
:return: list of related fields
|
||||
:rtype: List
|
||||
"""
|
||||
if isinstance(cls._related_fields, List):
|
||||
if cls._related_fields is not None:
|
||||
return cls._related_fields
|
||||
|
||||
related_fields = []
|
||||
@ -66,7 +66,7 @@ class RelationMixin:
|
||||
:return: set of related through fields names
|
||||
:rtype: Set
|
||||
"""
|
||||
if isinstance(cls._through_names, Set):
|
||||
if cls._through_names is not None:
|
||||
return cls._through_names
|
||||
|
||||
related_names = set()
|
||||
@ -86,7 +86,7 @@ class RelationMixin:
|
||||
:return: set of related fields names
|
||||
:rtype: Set
|
||||
"""
|
||||
if isinstance(cls._related_names, Set):
|
||||
if cls._related_names is not None:
|
||||
return cls._related_names
|
||||
|
||||
related_names = set()
|
||||
|
||||
@ -1,5 +1,4 @@
|
||||
import sys
|
||||
import uuid
|
||||
from typing import (
|
||||
AbstractSet,
|
||||
Any,
|
||||
@ -87,6 +86,7 @@ class NewBaseModel(pydantic.BaseModel, ModelTableProxy, metaclass=ModelMetaclass
|
||||
_choices_fields: Optional[Set]
|
||||
_pydantic_fields: Set
|
||||
_quick_access_fields: Set
|
||||
_json_fields: Set
|
||||
Meta: ModelMeta
|
||||
|
||||
# noinspection PyMissingConstructor
|
||||
@ -124,60 +124,12 @@ class NewBaseModel(pydantic.BaseModel, ModelTableProxy, metaclass=ModelMetaclass
|
||||
:type kwargs: Any
|
||||
"""
|
||||
self._verify_model_can_be_initialized()
|
||||
object.__setattr__(self, "_orm_id", uuid.uuid4().hex)
|
||||
object.__setattr__(self, "_orm_saved", False)
|
||||
object.__setattr__(self, "_pk_column", None)
|
||||
object.__setattr__(
|
||||
self,
|
||||
"_orm",
|
||||
RelationsManager(
|
||||
related_fields=self.extract_related_fields(), owner=cast("Model", self),
|
||||
),
|
||||
)
|
||||
self._initialize_internal_attributes()
|
||||
|
||||
pk_only = kwargs.pop("__pk_only__", False)
|
||||
object.__setattr__(self, "__pk_only__", pk_only)
|
||||
|
||||
excluded: Set[str] = kwargs.pop("__excluded__", set())
|
||||
|
||||
if "pk" in kwargs:
|
||||
kwargs[self.Meta.pkname] = kwargs.pop("pk")
|
||||
|
||||
# build the models to set them and validate but don't register
|
||||
# also remove property fields values from validation
|
||||
try:
|
||||
new_kwargs: Dict[str, Any] = {
|
||||
k: self._convert_json(
|
||||
k,
|
||||
self.Meta.model_fields[k].expand_relationship(
|
||||
v, self, to_register=False,
|
||||
)
|
||||
if k in self.Meta.model_fields
|
||||
else (
|
||||
v
|
||||
if k in self.__fields__
|
||||
# some random key will raise KeyError
|
||||
else self.__fields__["_Q*DHPQ(JAS*((JA)###*(&"]
|
||||
),
|
||||
"dumps",
|
||||
)
|
||||
for k, v in kwargs.items()
|
||||
if k not in object.__getattribute__(self, "Meta").property_fields
|
||||
}
|
||||
except KeyError as e:
|
||||
raise ModelError(
|
||||
f"Unknown field '{e.args[0]}' for model {self.get_name(lower=False)}"
|
||||
)
|
||||
|
||||
# explicitly set None to excluded fields
|
||||
# as pydantic populates them with default if set
|
||||
for field_to_nullify in excluded:
|
||||
new_kwargs[field_to_nullify] = None
|
||||
|
||||
# extract through fields
|
||||
through_tmp_dict = dict()
|
||||
for field_name in self.extract_through_names():
|
||||
through_tmp_dict[field_name] = new_kwargs.pop(field_name, None)
|
||||
new_kwargs, through_tmp_dict = self._process_kwargs(kwargs)
|
||||
|
||||
values, fields_set, validation_error = pydantic.validate_model(
|
||||
self, new_kwargs # type: ignore
|
||||
@ -190,10 +142,10 @@ class NewBaseModel(pydantic.BaseModel, ModelTableProxy, metaclass=ModelMetaclass
|
||||
|
||||
# add back through fields
|
||||
new_kwargs.update(through_tmp_dict)
|
||||
|
||||
model_fields = object.__getattribute__(self, "Meta").model_fields
|
||||
# register the columns models after initialization
|
||||
for related in self.extract_related_names().union(self.extract_through_names()):
|
||||
self.Meta.model_fields[related].expand_relationship(
|
||||
model_fields[related].expand_relationship(
|
||||
new_kwargs.get(related), self, to_register=True,
|
||||
)
|
||||
|
||||
@ -314,15 +266,93 @@ class NewBaseModel(pydantic.BaseModel, ModelTableProxy, metaclass=ModelMetaclass
|
||||
:return: None
|
||||
:rtype: None
|
||||
"""
|
||||
if self.Meta.abstract:
|
||||
if object.__getattribute__(self, "Meta").abstract:
|
||||
raise ModelError(f"You cannot initialize abstract model {self.get_name()}")
|
||||
if self.Meta.requires_ref_update:
|
||||
if object.__getattribute__(self, "Meta").requires_ref_update:
|
||||
raise ModelError(
|
||||
f"Model {self.get_name()} has not updated "
|
||||
f"ForwardRefs. \nBefore using the model you "
|
||||
f"need to call update_forward_refs()."
|
||||
)
|
||||
|
||||
def _process_kwargs(self, kwargs: Dict) -> Tuple[Dict, Dict]:
|
||||
"""
|
||||
Initializes nested models.
|
||||
|
||||
Removes property_fields
|
||||
|
||||
Checks if field is in the model fields or pydatnic fields.
|
||||
|
||||
Nullifies fields that should be excluded.
|
||||
|
||||
Extracts through models from kwargs into temporary dict.
|
||||
|
||||
:param kwargs: passed to init keyword arguments
|
||||
:type kwargs: Dict
|
||||
:return: modified kwargs
|
||||
:rtype: Tuple[Dict, Dict]
|
||||
"""
|
||||
meta = object.__getattribute__(self, "Meta")
|
||||
property_fields = meta.property_fields
|
||||
model_fields = meta.model_fields
|
||||
pydantic_fields = object.__getattribute__(self, "__fields__")
|
||||
|
||||
# remove property fields
|
||||
for prop_filed in property_fields:
|
||||
kwargs.pop(prop_filed, None)
|
||||
|
||||
excluded: Set[str] = kwargs.pop("__excluded__", set())
|
||||
if "pk" in kwargs:
|
||||
kwargs[meta.pkname] = kwargs.pop("pk")
|
||||
|
||||
# extract through fields
|
||||
through_tmp_dict = dict()
|
||||
for field_name in self.extract_through_names():
|
||||
through_tmp_dict[field_name] = kwargs.pop(field_name, None)
|
||||
|
||||
try:
|
||||
new_kwargs: Dict[str, Any] = {
|
||||
k: self._convert_json(
|
||||
k,
|
||||
model_fields[k].expand_relationship(v, self, to_register=False,)
|
||||
if k in model_fields
|
||||
else (
|
||||
v
|
||||
if k in pydantic_fields
|
||||
else model_fields["HAP&*YA^)*GW^&QT6567q56gGG%$%"]
|
||||
),
|
||||
"dumps",
|
||||
)
|
||||
for k, v in kwargs.items()
|
||||
}
|
||||
except KeyError as e:
|
||||
raise ModelError(
|
||||
f"Unknown field '{e.args[0]}' for model {self.get_name(lower=False)}"
|
||||
)
|
||||
|
||||
# explicitly set None to excluded fields
|
||||
# as pydantic populates them with default if set
|
||||
for field_to_nullify in excluded:
|
||||
new_kwargs[field_to_nullify] = None
|
||||
|
||||
return new_kwargs, through_tmp_dict
|
||||
|
||||
def _initialize_internal_attributes(self) -> None:
|
||||
"""
|
||||
Initializes internal attributes during __init__()
|
||||
:rtype: None
|
||||
"""
|
||||
# object.__setattr__(self, "_orm_id", uuid.uuid4().hex)
|
||||
object.__setattr__(self, "_orm_saved", False)
|
||||
object.__setattr__(self, "_pk_column", None)
|
||||
object.__setattr__(
|
||||
self,
|
||||
"_orm",
|
||||
RelationsManager(
|
||||
related_fields=self.extract_related_fields(), owner=cast("Model", self),
|
||||
),
|
||||
)
|
||||
|
||||
def _extract_related_model_instead_of_field(
|
||||
self, item: str
|
||||
) -> Optional[Union["Model", Sequence["Model"]]]:
|
||||
@ -363,8 +393,8 @@ class NewBaseModel(pydantic.BaseModel, ModelTableProxy, metaclass=ModelMetaclass
|
||||
:rtype: bool
|
||||
"""
|
||||
return (
|
||||
self._orm_id == other._orm_id
|
||||
or (self.pk == other.pk and self.pk is not None)
|
||||
# self._orm_id == other._orm_id
|
||||
(self.pk == other.pk and self.pk is not None)
|
||||
or (
|
||||
(self.pk is None and other.pk is None)
|
||||
and {
|
||||
@ -748,7 +778,7 @@ class NewBaseModel(pydantic.BaseModel, ModelTableProxy, metaclass=ModelMetaclass
|
||||
:return: converted value if needed, else original value
|
||||
:rtype: Any
|
||||
"""
|
||||
if not self._is_conversion_to_json_needed(column_name):
|
||||
if column_name not in object.__getattribute__(self, "_json_fields"):
|
||||
return value
|
||||
|
||||
condition = (
|
||||
@ -765,20 +795,6 @@ class NewBaseModel(pydantic.BaseModel, ModelTableProxy, metaclass=ModelMetaclass
|
||||
pass
|
||||
return value.decode("utf-8") if isinstance(value, bytes) else value
|
||||
|
||||
def _is_conversion_to_json_needed(self, column_name: str) -> bool:
|
||||
"""
|
||||
Checks if given column name is related to JSON field.
|
||||
|
||||
:param column_name: name of the field
|
||||
:type column_name: str
|
||||
:return: result of the check
|
||||
:rtype: bool
|
||||
"""
|
||||
return (
|
||||
column_name in self.Meta.model_fields
|
||||
and self.Meta.model_fields[column_name].__type__ == pydantic.Json
|
||||
)
|
||||
|
||||
def _extract_own_model_fields(self) -> Dict:
|
||||
"""
|
||||
Returns a dictionary with field names and values for fields that are not
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
from typing import List
|
||||
|
||||
import databases
|
||||
import pydantic
|
||||
import pytest
|
||||
import sqlalchemy
|
||||
from fastapi import FastAPI
|
||||
@ -124,6 +125,18 @@ def test_schema_modification():
|
||||
x.get("type") == "array" for x in schema["properties"]["categories"]["anyOf"]
|
||||
)
|
||||
assert schema["properties"]["categories"]["title"] == "Categories"
|
||||
assert schema["example"] == {
|
||||
"id": 0,
|
||||
"name": "string",
|
||||
"categories": [{"id": 0, "name": "string"}],
|
||||
}
|
||||
|
||||
schema = Category.schema()
|
||||
assert schema["example"] == {
|
||||
"id": 0,
|
||||
"name": "string",
|
||||
"items": [{"id": 0, "name": "string"}],
|
||||
}
|
||||
|
||||
|
||||
def test_schema_gen():
|
||||
|
||||
Reference in New Issue
Block a user