add examples to openapi schema, some perf improvements
This commit is contained in:
@ -16,6 +16,9 @@
|
|||||||
|
|
||||||
If none of the above `ormar` (or rather pydantic) will fail during loading data from the database,
|
If none of the above `ormar` (or rather pydantic) will fail during loading data from the database,
|
||||||
with missing required value for declared pydantic field.
|
with missing required value for declared pydantic field.
|
||||||
|
* Ormar provides now a meaningful examples in openapi schema, including nested models.
|
||||||
|
The same algorithm is used to iterate related models without looks
|
||||||
|
as with `dict()` and `select/load_all`. Examples appear also in `fastapi`. [#157](https://github.com/collerek/ormar/issues/157)
|
||||||
|
|
||||||
## 🐛 Fixes
|
## 🐛 Fixes
|
||||||
|
|
||||||
@ -26,7 +29,9 @@
|
|||||||
## 💬 Other
|
## 💬 Other
|
||||||
|
|
||||||
* Add connecting to the database in QuickStart in readme [#180](https://github.com/collerek/ormar/issues/180)
|
* Add connecting to the database in QuickStart in readme [#180](https://github.com/collerek/ormar/issues/180)
|
||||||
|
* OpenAPI schema does no longer include `ormar.Model` docstring as description,
|
||||||
|
instead just model name is provided if you do not provide your own docstring.
|
||||||
|
* Some performance improvements.
|
||||||
|
|
||||||
# 0.10.5
|
# 0.10.5
|
||||||
|
|
||||||
|
|||||||
@ -76,7 +76,7 @@ class UndefinedType: # pragma no cover
|
|||||||
|
|
||||||
Undefined = UndefinedType()
|
Undefined = UndefinedType()
|
||||||
|
|
||||||
__version__ = "0.10.5"
|
__version__ = "0.10.6"
|
||||||
__all__ = [
|
__all__ = [
|
||||||
"Integer",
|
"Integer",
|
||||||
"BigInteger",
|
"BigInteger",
|
||||||
|
|||||||
@ -31,6 +31,7 @@ class BaseField(FieldInfo):
|
|||||||
|
|
||||||
def __init__(self, **kwargs: Any) -> None:
|
def __init__(self, **kwargs: Any) -> None:
|
||||||
self.__type__: type = kwargs.pop("__type__", None)
|
self.__type__: type = kwargs.pop("__type__", None)
|
||||||
|
self.__sample__: type = kwargs.pop("__sample__", None)
|
||||||
self.related_name = kwargs.pop("related_name", None)
|
self.related_name = kwargs.pop("related_name", None)
|
||||||
|
|
||||||
self.column_type: sqlalchemy.Column = kwargs.pop("column_type", None)
|
self.column_type: sqlalchemy.Column = kwargs.pop("column_type", None)
|
||||||
|
|||||||
@ -80,7 +80,7 @@ def create_dummy_model(
|
|||||||
:rtype: pydantic.BaseModel
|
:rtype: pydantic.BaseModel
|
||||||
"""
|
"""
|
||||||
alias = (
|
alias = (
|
||||||
"".join(choices(string.ascii_uppercase, k=2)) + uuid.uuid4().hex[:4]
|
"".join(choices(string.ascii_uppercase, k=6)) # + uuid.uuid4().hex[:4]
|
||||||
).lower()
|
).lower()
|
||||||
fields = {f"{pk_field.name}": (pk_field.__type__, None)}
|
fields = {f"{pk_field.name}": (pk_field.__type__, None)}
|
||||||
|
|
||||||
|
|||||||
@ -62,6 +62,7 @@ class ModelFieldFactory:
|
|||||||
|
|
||||||
_bases: Any = (BaseField,)
|
_bases: Any = (BaseField,)
|
||||||
_type: Any = None
|
_type: Any = None
|
||||||
|
_sample: Any = None
|
||||||
|
|
||||||
def __new__(cls, *args: Any, **kwargs: Any) -> BaseField: # type: ignore
|
def __new__(cls, *args: Any, **kwargs: Any) -> BaseField: # type: ignore
|
||||||
cls.validate(**kwargs)
|
cls.validate(**kwargs)
|
||||||
@ -80,6 +81,7 @@ class ModelFieldFactory:
|
|||||||
|
|
||||||
namespace = dict(
|
namespace = dict(
|
||||||
__type__=cls._type,
|
__type__=cls._type,
|
||||||
|
__sample__=cls._sample,
|
||||||
alias=kwargs.pop("name", None),
|
alias=kwargs.pop("name", None),
|
||||||
name=None,
|
name=None,
|
||||||
primary_key=primary_key,
|
primary_key=primary_key,
|
||||||
@ -129,6 +131,7 @@ class String(ModelFieldFactory, str):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
_type = str
|
_type = str
|
||||||
|
_sample = "string"
|
||||||
|
|
||||||
def __new__( # type: ignore # noqa CFQ002
|
def __new__( # type: ignore # noqa CFQ002
|
||||||
cls,
|
cls,
|
||||||
@ -185,6 +188,7 @@ class Integer(ModelFieldFactory, int):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
_type = int
|
_type = int
|
||||||
|
_sample = 0
|
||||||
|
|
||||||
def __new__( # type: ignore
|
def __new__( # type: ignore
|
||||||
cls,
|
cls,
|
||||||
@ -232,6 +236,7 @@ class Text(ModelFieldFactory, str):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
_type = str
|
_type = str
|
||||||
|
_sample = "text"
|
||||||
|
|
||||||
def __new__( # type: ignore
|
def __new__( # type: ignore
|
||||||
cls, *, allow_blank: bool = True, strip_whitespace: bool = False, **kwargs: Any
|
cls, *, allow_blank: bool = True, strip_whitespace: bool = False, **kwargs: Any
|
||||||
@ -267,6 +272,7 @@ class Float(ModelFieldFactory, float):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
_type = float
|
_type = float
|
||||||
|
_sample = 0.0
|
||||||
|
|
||||||
def __new__( # type: ignore
|
def __new__( # type: ignore
|
||||||
cls,
|
cls,
|
||||||
@ -316,6 +322,7 @@ else:
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
_type = bool
|
_type = bool
|
||||||
|
_sample = True
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def get_column_type(cls, **kwargs: Any) -> Any:
|
def get_column_type(cls, **kwargs: Any) -> Any:
|
||||||
@ -337,6 +344,7 @@ class DateTime(ModelFieldFactory, datetime.datetime):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
_type = datetime.datetime
|
_type = datetime.datetime
|
||||||
|
_sample = "datetime"
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def get_column_type(cls, **kwargs: Any) -> Any:
|
def get_column_type(cls, **kwargs: Any) -> Any:
|
||||||
@ -358,6 +366,7 @@ class Date(ModelFieldFactory, datetime.date):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
_type = datetime.date
|
_type = datetime.date
|
||||||
|
_sample = "date"
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def get_column_type(cls, **kwargs: Any) -> Any:
|
def get_column_type(cls, **kwargs: Any) -> Any:
|
||||||
@ -379,6 +388,7 @@ class Time(ModelFieldFactory, datetime.time):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
_type = datetime.time
|
_type = datetime.time
|
||||||
|
_sample = "time"
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def get_column_type(cls, **kwargs: Any) -> Any:
|
def get_column_type(cls, **kwargs: Any) -> Any:
|
||||||
@ -400,6 +410,7 @@ class JSON(ModelFieldFactory, pydantic.Json):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
_type = pydantic.Json
|
_type = pydantic.Json
|
||||||
|
_sample = '{"json": "json"}'
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def get_column_type(cls, **kwargs: Any) -> Any:
|
def get_column_type(cls, **kwargs: Any) -> Any:
|
||||||
@ -421,6 +432,7 @@ class LargeBinary(ModelFieldFactory, bytes):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
_type = bytes
|
_type = bytes
|
||||||
|
_sample = "bytes"
|
||||||
|
|
||||||
def __new__( # type: ignore # noqa CFQ002
|
def __new__( # type: ignore # noqa CFQ002
|
||||||
cls, *, max_length: int = None, **kwargs: Any
|
cls, *, max_length: int = None, **kwargs: Any
|
||||||
@ -468,6 +480,7 @@ class BigInteger(Integer, int):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
_type = int
|
_type = int
|
||||||
|
_sample = 0
|
||||||
|
|
||||||
def __new__( # type: ignore
|
def __new__( # type: ignore
|
||||||
cls,
|
cls,
|
||||||
@ -515,6 +528,7 @@ class Decimal(ModelFieldFactory, decimal.Decimal):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
_type = decimal.Decimal
|
_type = decimal.Decimal
|
||||||
|
_sample = 0.0
|
||||||
|
|
||||||
def __new__( # type: ignore # noqa CFQ002
|
def __new__( # type: ignore # noqa CFQ002
|
||||||
cls,
|
cls,
|
||||||
@ -587,6 +601,7 @@ class UUID(ModelFieldFactory, uuid.UUID):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
_type = uuid.UUID
|
_type = uuid.UUID
|
||||||
|
_sample = "uuid"
|
||||||
|
|
||||||
def __new__( # type: ignore # noqa CFQ002
|
def __new__( # type: ignore # noqa CFQ002
|
||||||
cls, *, uuid_format: str = "hex", **kwargs: Any
|
cls, *, uuid_format: str = "hex", **kwargs: Any
|
||||||
|
|||||||
@ -3,6 +3,7 @@ import itertools
|
|||||||
import sqlite3
|
import sqlite3
|
||||||
from typing import Any, Dict, List, TYPE_CHECKING, Tuple, Type
|
from typing import Any, Dict, List, TYPE_CHECKING, Tuple, Type
|
||||||
|
|
||||||
|
import pydantic
|
||||||
from pydantic.typing import ForwardRef
|
from pydantic.typing import ForwardRef
|
||||||
import ormar # noqa: I100
|
import ormar # noqa: I100
|
||||||
from ormar.models.helpers.pydantic import populate_pydantic_default_values
|
from ormar.models.helpers.pydantic import populate_pydantic_default_values
|
||||||
@ -61,6 +62,12 @@ def populate_default_options_values(
|
|||||||
else:
|
else:
|
||||||
new_model.Meta.requires_ref_update = False
|
new_model.Meta.requires_ref_update = False
|
||||||
|
|
||||||
|
new_model._json_fields = {
|
||||||
|
name
|
||||||
|
for name, field in new_model.Meta.model_fields.items()
|
||||||
|
if field.__type__ == pydantic.Json
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
class Connection(sqlite3.Connection):
|
class Connection(sqlite3.Connection):
|
||||||
def __init__(self, *args: Any, **kwargs: Any) -> None: # pragma: no cover
|
def __init__(self, *args: Any, **kwargs: Any) -> None: # pragma: no cover
|
||||||
|
|||||||
@ -15,6 +15,7 @@ from pydantic.main import SchemaExtraCallable
|
|||||||
import ormar # noqa: I100, I202
|
import ormar # noqa: I100, I202
|
||||||
from ormar.fields import BaseField
|
from ormar.fields import BaseField
|
||||||
from ormar.models.helpers.models import meta_field_not_set
|
from ormar.models.helpers.models import meta_field_not_set
|
||||||
|
from ormar.queryset.utils import translate_list_to_dict
|
||||||
|
|
||||||
if TYPE_CHECKING: # pragma no cover
|
if TYPE_CHECKING: # pragma no cover
|
||||||
from ormar import Model
|
from ormar import Model
|
||||||
@ -116,12 +117,45 @@ def choices_validator(cls: Type["Model"], values: Dict[str, Any]) -> Dict[str, A
|
|||||||
return values
|
return values
|
||||||
|
|
||||||
|
|
||||||
|
def generate_model_example(model: Type["Model"], relation_map: Dict = None) -> Dict:
|
||||||
|
"""
|
||||||
|
Generates example to be included in schema in fastapi.
|
||||||
|
|
||||||
|
:param model: ormar.Model
|
||||||
|
:type model: Type["Model"]
|
||||||
|
:param relation_map: dict with relations to follow
|
||||||
|
:type relation_map: Optional[Dict]
|
||||||
|
:return:
|
||||||
|
:rtype: Dict[str, int]
|
||||||
|
"""
|
||||||
|
example: Dict[str, Any] = dict()
|
||||||
|
relation_map = (
|
||||||
|
relation_map
|
||||||
|
if relation_map is not None
|
||||||
|
else translate_list_to_dict(model._iterate_related_models())
|
||||||
|
)
|
||||||
|
for name, field in model.Meta.model_fields.items():
|
||||||
|
if not field.is_relation:
|
||||||
|
example[name] = field.__sample__
|
||||||
|
elif isinstance(relation_map, dict) and name in relation_map:
|
||||||
|
value = generate_model_example(
|
||||||
|
field.to, relation_map=relation_map.get(name, {})
|
||||||
|
)
|
||||||
|
new_value = [value] if field.is_multi or field.virtual else value
|
||||||
|
example[name] = new_value
|
||||||
|
|
||||||
|
return example
|
||||||
|
|
||||||
|
|
||||||
def construct_modify_schema_function(fields_with_choices: List) -> SchemaExtraCallable:
|
def construct_modify_schema_function(fields_with_choices: List) -> SchemaExtraCallable:
|
||||||
"""
|
"""
|
||||||
Modifies the schema to include fields with choices validator.
|
Modifies the schema to include fields with choices validator.
|
||||||
Those fields will be displayed in schema as Enum types with available choices
|
Those fields will be displayed in schema as Enum types with available choices
|
||||||
values listed next to them.
|
values listed next to them.
|
||||||
|
|
||||||
|
Note that schema extra has to be a function, otherwise it's called to soon
|
||||||
|
before all the relations are expanded.
|
||||||
|
|
||||||
:param fields_with_choices: list of fields with choices validation
|
:param fields_with_choices: list of fields with choices validation
|
||||||
:type fields_with_choices: List
|
:type fields_with_choices: List
|
||||||
:return: callable that will be run by pydantic to modify the schema
|
:return: callable that will be run by pydantic to modify the schema
|
||||||
@ -133,6 +167,28 @@ def construct_modify_schema_function(fields_with_choices: List) -> SchemaExtraCa
|
|||||||
if field_id in fields_with_choices:
|
if field_id in fields_with_choices:
|
||||||
prop["enum"] = list(model.Meta.model_fields[field_id].choices)
|
prop["enum"] = list(model.Meta.model_fields[field_id].choices)
|
||||||
prop["description"] = prop.get("description", "") + "An enumeration."
|
prop["description"] = prop.get("description", "") + "An enumeration."
|
||||||
|
schema["example"] = generate_model_example(model=model)
|
||||||
|
if "Main base class of ormar Model." in schema.get("description", ""):
|
||||||
|
schema["description"] = f"{model.__name__}"
|
||||||
|
|
||||||
|
return staticmethod(schema_extra) # type: ignore
|
||||||
|
|
||||||
|
|
||||||
|
def construct_schema_function_without_choices() -> SchemaExtraCallable:
|
||||||
|
"""
|
||||||
|
Modifies model example and description if needed.
|
||||||
|
|
||||||
|
Note that schema extra has to be a function, otherwise it's called to soon
|
||||||
|
before all the relations are expanded.
|
||||||
|
|
||||||
|
:return: callable that will be run by pydantic to modify the schema
|
||||||
|
:rtype: Callable
|
||||||
|
"""
|
||||||
|
|
||||||
|
def schema_extra(schema: Dict[str, Any], model: Type["Model"]) -> None:
|
||||||
|
schema["example"] = generate_model_example(model=model)
|
||||||
|
if "Main base class of ormar Model." in schema.get("description", ""):
|
||||||
|
schema["description"] = f"{model.__name__}"
|
||||||
|
|
||||||
return staticmethod(schema_extra) # type: ignore
|
return staticmethod(schema_extra) # type: ignore
|
||||||
|
|
||||||
@ -162,3 +218,5 @@ def populate_choices_validators(model: Type["Model"]) -> None: # noqa CCR001
|
|||||||
model.Config.schema_extra = construct_modify_schema_function(
|
model.Config.schema_extra = construct_modify_schema_function(
|
||||||
fields_with_choices=fields_with_choices
|
fields_with_choices=fields_with_choices
|
||||||
)
|
)
|
||||||
|
else:
|
||||||
|
model.Config.schema_extra = construct_schema_function_without_choices()
|
||||||
|
|||||||
@ -94,6 +94,7 @@ def add_cached_properties(new_model: Type["Model"]) -> None:
|
|||||||
new_model._related_fields = None
|
new_model._related_fields = None
|
||||||
new_model._pydantic_fields = {name for name in new_model.__fields__}
|
new_model._pydantic_fields = {name for name in new_model.__fields__}
|
||||||
new_model._choices_fields = set()
|
new_model._choices_fields = set()
|
||||||
|
new_model._json_fields = set()
|
||||||
|
|
||||||
|
|
||||||
def add_property_fields(new_model: Type["Model"], attrs: Dict) -> None: # noqa: CCR001
|
def add_property_fields(new_model: Type["Model"], attrs: Dict) -> None: # noqa: CCR001
|
||||||
|
|||||||
@ -48,7 +48,7 @@ class RelationMixin:
|
|||||||
:return: list of related fields
|
:return: list of related fields
|
||||||
:rtype: List
|
:rtype: List
|
||||||
"""
|
"""
|
||||||
if isinstance(cls._related_fields, List):
|
if cls._related_fields is not None:
|
||||||
return cls._related_fields
|
return cls._related_fields
|
||||||
|
|
||||||
related_fields = []
|
related_fields = []
|
||||||
@ -66,7 +66,7 @@ class RelationMixin:
|
|||||||
:return: set of related through fields names
|
:return: set of related through fields names
|
||||||
:rtype: Set
|
:rtype: Set
|
||||||
"""
|
"""
|
||||||
if isinstance(cls._through_names, Set):
|
if cls._through_names is not None:
|
||||||
return cls._through_names
|
return cls._through_names
|
||||||
|
|
||||||
related_names = set()
|
related_names = set()
|
||||||
@ -86,7 +86,7 @@ class RelationMixin:
|
|||||||
:return: set of related fields names
|
:return: set of related fields names
|
||||||
:rtype: Set
|
:rtype: Set
|
||||||
"""
|
"""
|
||||||
if isinstance(cls._related_names, Set):
|
if cls._related_names is not None:
|
||||||
return cls._related_names
|
return cls._related_names
|
||||||
|
|
||||||
related_names = set()
|
related_names = set()
|
||||||
|
|||||||
@ -1,5 +1,4 @@
|
|||||||
import sys
|
import sys
|
||||||
import uuid
|
|
||||||
from typing import (
|
from typing import (
|
||||||
AbstractSet,
|
AbstractSet,
|
||||||
Any,
|
Any,
|
||||||
@ -87,6 +86,7 @@ class NewBaseModel(pydantic.BaseModel, ModelTableProxy, metaclass=ModelMetaclass
|
|||||||
_choices_fields: Optional[Set]
|
_choices_fields: Optional[Set]
|
||||||
_pydantic_fields: Set
|
_pydantic_fields: Set
|
||||||
_quick_access_fields: Set
|
_quick_access_fields: Set
|
||||||
|
_json_fields: Set
|
||||||
Meta: ModelMeta
|
Meta: ModelMeta
|
||||||
|
|
||||||
# noinspection PyMissingConstructor
|
# noinspection PyMissingConstructor
|
||||||
@ -124,60 +124,12 @@ class NewBaseModel(pydantic.BaseModel, ModelTableProxy, metaclass=ModelMetaclass
|
|||||||
:type kwargs: Any
|
:type kwargs: Any
|
||||||
"""
|
"""
|
||||||
self._verify_model_can_be_initialized()
|
self._verify_model_can_be_initialized()
|
||||||
object.__setattr__(self, "_orm_id", uuid.uuid4().hex)
|
self._initialize_internal_attributes()
|
||||||
object.__setattr__(self, "_orm_saved", False)
|
|
||||||
object.__setattr__(self, "_pk_column", None)
|
|
||||||
object.__setattr__(
|
|
||||||
self,
|
|
||||||
"_orm",
|
|
||||||
RelationsManager(
|
|
||||||
related_fields=self.extract_related_fields(), owner=cast("Model", self),
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
pk_only = kwargs.pop("__pk_only__", False)
|
pk_only = kwargs.pop("__pk_only__", False)
|
||||||
object.__setattr__(self, "__pk_only__", pk_only)
|
object.__setattr__(self, "__pk_only__", pk_only)
|
||||||
|
|
||||||
excluded: Set[str] = kwargs.pop("__excluded__", set())
|
new_kwargs, through_tmp_dict = self._process_kwargs(kwargs)
|
||||||
|
|
||||||
if "pk" in kwargs:
|
|
||||||
kwargs[self.Meta.pkname] = kwargs.pop("pk")
|
|
||||||
|
|
||||||
# build the models to set them and validate but don't register
|
|
||||||
# also remove property fields values from validation
|
|
||||||
try:
|
|
||||||
new_kwargs: Dict[str, Any] = {
|
|
||||||
k: self._convert_json(
|
|
||||||
k,
|
|
||||||
self.Meta.model_fields[k].expand_relationship(
|
|
||||||
v, self, to_register=False,
|
|
||||||
)
|
|
||||||
if k in self.Meta.model_fields
|
|
||||||
else (
|
|
||||||
v
|
|
||||||
if k in self.__fields__
|
|
||||||
# some random key will raise KeyError
|
|
||||||
else self.__fields__["_Q*DHPQ(JAS*((JA)###*(&"]
|
|
||||||
),
|
|
||||||
"dumps",
|
|
||||||
)
|
|
||||||
for k, v in kwargs.items()
|
|
||||||
if k not in object.__getattribute__(self, "Meta").property_fields
|
|
||||||
}
|
|
||||||
except KeyError as e:
|
|
||||||
raise ModelError(
|
|
||||||
f"Unknown field '{e.args[0]}' for model {self.get_name(lower=False)}"
|
|
||||||
)
|
|
||||||
|
|
||||||
# explicitly set None to excluded fields
|
|
||||||
# as pydantic populates them with default if set
|
|
||||||
for field_to_nullify in excluded:
|
|
||||||
new_kwargs[field_to_nullify] = None
|
|
||||||
|
|
||||||
# extract through fields
|
|
||||||
through_tmp_dict = dict()
|
|
||||||
for field_name in self.extract_through_names():
|
|
||||||
through_tmp_dict[field_name] = new_kwargs.pop(field_name, None)
|
|
||||||
|
|
||||||
values, fields_set, validation_error = pydantic.validate_model(
|
values, fields_set, validation_error = pydantic.validate_model(
|
||||||
self, new_kwargs # type: ignore
|
self, new_kwargs # type: ignore
|
||||||
@ -190,10 +142,10 @@ class NewBaseModel(pydantic.BaseModel, ModelTableProxy, metaclass=ModelMetaclass
|
|||||||
|
|
||||||
# add back through fields
|
# add back through fields
|
||||||
new_kwargs.update(through_tmp_dict)
|
new_kwargs.update(through_tmp_dict)
|
||||||
|
model_fields = object.__getattribute__(self, "Meta").model_fields
|
||||||
# register the columns models after initialization
|
# register the columns models after initialization
|
||||||
for related in self.extract_related_names().union(self.extract_through_names()):
|
for related in self.extract_related_names().union(self.extract_through_names()):
|
||||||
self.Meta.model_fields[related].expand_relationship(
|
model_fields[related].expand_relationship(
|
||||||
new_kwargs.get(related), self, to_register=True,
|
new_kwargs.get(related), self, to_register=True,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -314,15 +266,93 @@ class NewBaseModel(pydantic.BaseModel, ModelTableProxy, metaclass=ModelMetaclass
|
|||||||
:return: None
|
:return: None
|
||||||
:rtype: None
|
:rtype: None
|
||||||
"""
|
"""
|
||||||
if self.Meta.abstract:
|
if object.__getattribute__(self, "Meta").abstract:
|
||||||
raise ModelError(f"You cannot initialize abstract model {self.get_name()}")
|
raise ModelError(f"You cannot initialize abstract model {self.get_name()}")
|
||||||
if self.Meta.requires_ref_update:
|
if object.__getattribute__(self, "Meta").requires_ref_update:
|
||||||
raise ModelError(
|
raise ModelError(
|
||||||
f"Model {self.get_name()} has not updated "
|
f"Model {self.get_name()} has not updated "
|
||||||
f"ForwardRefs. \nBefore using the model you "
|
f"ForwardRefs. \nBefore using the model you "
|
||||||
f"need to call update_forward_refs()."
|
f"need to call update_forward_refs()."
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def _process_kwargs(self, kwargs: Dict) -> Tuple[Dict, Dict]:
|
||||||
|
"""
|
||||||
|
Initializes nested models.
|
||||||
|
|
||||||
|
Removes property_fields
|
||||||
|
|
||||||
|
Checks if field is in the model fields or pydatnic fields.
|
||||||
|
|
||||||
|
Nullifies fields that should be excluded.
|
||||||
|
|
||||||
|
Extracts through models from kwargs into temporary dict.
|
||||||
|
|
||||||
|
:param kwargs: passed to init keyword arguments
|
||||||
|
:type kwargs: Dict
|
||||||
|
:return: modified kwargs
|
||||||
|
:rtype: Tuple[Dict, Dict]
|
||||||
|
"""
|
||||||
|
meta = object.__getattribute__(self, "Meta")
|
||||||
|
property_fields = meta.property_fields
|
||||||
|
model_fields = meta.model_fields
|
||||||
|
pydantic_fields = object.__getattribute__(self, "__fields__")
|
||||||
|
|
||||||
|
# remove property fields
|
||||||
|
for prop_filed in property_fields:
|
||||||
|
kwargs.pop(prop_filed, None)
|
||||||
|
|
||||||
|
excluded: Set[str] = kwargs.pop("__excluded__", set())
|
||||||
|
if "pk" in kwargs:
|
||||||
|
kwargs[meta.pkname] = kwargs.pop("pk")
|
||||||
|
|
||||||
|
# extract through fields
|
||||||
|
through_tmp_dict = dict()
|
||||||
|
for field_name in self.extract_through_names():
|
||||||
|
through_tmp_dict[field_name] = kwargs.pop(field_name, None)
|
||||||
|
|
||||||
|
try:
|
||||||
|
new_kwargs: Dict[str, Any] = {
|
||||||
|
k: self._convert_json(
|
||||||
|
k,
|
||||||
|
model_fields[k].expand_relationship(v, self, to_register=False,)
|
||||||
|
if k in model_fields
|
||||||
|
else (
|
||||||
|
v
|
||||||
|
if k in pydantic_fields
|
||||||
|
else model_fields["HAP&*YA^)*GW^&QT6567q56gGG%$%"]
|
||||||
|
),
|
||||||
|
"dumps",
|
||||||
|
)
|
||||||
|
for k, v in kwargs.items()
|
||||||
|
}
|
||||||
|
except KeyError as e:
|
||||||
|
raise ModelError(
|
||||||
|
f"Unknown field '{e.args[0]}' for model {self.get_name(lower=False)}"
|
||||||
|
)
|
||||||
|
|
||||||
|
# explicitly set None to excluded fields
|
||||||
|
# as pydantic populates them with default if set
|
||||||
|
for field_to_nullify in excluded:
|
||||||
|
new_kwargs[field_to_nullify] = None
|
||||||
|
|
||||||
|
return new_kwargs, through_tmp_dict
|
||||||
|
|
||||||
|
def _initialize_internal_attributes(self) -> None:
|
||||||
|
"""
|
||||||
|
Initializes internal attributes during __init__()
|
||||||
|
:rtype: None
|
||||||
|
"""
|
||||||
|
# object.__setattr__(self, "_orm_id", uuid.uuid4().hex)
|
||||||
|
object.__setattr__(self, "_orm_saved", False)
|
||||||
|
object.__setattr__(self, "_pk_column", None)
|
||||||
|
object.__setattr__(
|
||||||
|
self,
|
||||||
|
"_orm",
|
||||||
|
RelationsManager(
|
||||||
|
related_fields=self.extract_related_fields(), owner=cast("Model", self),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
def _extract_related_model_instead_of_field(
|
def _extract_related_model_instead_of_field(
|
||||||
self, item: str
|
self, item: str
|
||||||
) -> Optional[Union["Model", Sequence["Model"]]]:
|
) -> Optional[Union["Model", Sequence["Model"]]]:
|
||||||
@ -363,8 +393,8 @@ class NewBaseModel(pydantic.BaseModel, ModelTableProxy, metaclass=ModelMetaclass
|
|||||||
:rtype: bool
|
:rtype: bool
|
||||||
"""
|
"""
|
||||||
return (
|
return (
|
||||||
self._orm_id == other._orm_id
|
# self._orm_id == other._orm_id
|
||||||
or (self.pk == other.pk and self.pk is not None)
|
(self.pk == other.pk and self.pk is not None)
|
||||||
or (
|
or (
|
||||||
(self.pk is None and other.pk is None)
|
(self.pk is None and other.pk is None)
|
||||||
and {
|
and {
|
||||||
@ -748,7 +778,7 @@ class NewBaseModel(pydantic.BaseModel, ModelTableProxy, metaclass=ModelMetaclass
|
|||||||
:return: converted value if needed, else original value
|
:return: converted value if needed, else original value
|
||||||
:rtype: Any
|
:rtype: Any
|
||||||
"""
|
"""
|
||||||
if not self._is_conversion_to_json_needed(column_name):
|
if column_name not in object.__getattribute__(self, "_json_fields"):
|
||||||
return value
|
return value
|
||||||
|
|
||||||
condition = (
|
condition = (
|
||||||
@ -765,20 +795,6 @@ class NewBaseModel(pydantic.BaseModel, ModelTableProxy, metaclass=ModelMetaclass
|
|||||||
pass
|
pass
|
||||||
return value.decode("utf-8") if isinstance(value, bytes) else value
|
return value.decode("utf-8") if isinstance(value, bytes) else value
|
||||||
|
|
||||||
def _is_conversion_to_json_needed(self, column_name: str) -> bool:
|
|
||||||
"""
|
|
||||||
Checks if given column name is related to JSON field.
|
|
||||||
|
|
||||||
:param column_name: name of the field
|
|
||||||
:type column_name: str
|
|
||||||
:return: result of the check
|
|
||||||
:rtype: bool
|
|
||||||
"""
|
|
||||||
return (
|
|
||||||
column_name in self.Meta.model_fields
|
|
||||||
and self.Meta.model_fields[column_name].__type__ == pydantic.Json
|
|
||||||
)
|
|
||||||
|
|
||||||
def _extract_own_model_fields(self) -> Dict:
|
def _extract_own_model_fields(self) -> Dict:
|
||||||
"""
|
"""
|
||||||
Returns a dictionary with field names and values for fields that are not
|
Returns a dictionary with field names and values for fields that are not
|
||||||
|
|||||||
@ -1,6 +1,7 @@
|
|||||||
from typing import List
|
from typing import List
|
||||||
|
|
||||||
import databases
|
import databases
|
||||||
|
import pydantic
|
||||||
import pytest
|
import pytest
|
||||||
import sqlalchemy
|
import sqlalchemy
|
||||||
from fastapi import FastAPI
|
from fastapi import FastAPI
|
||||||
@ -124,6 +125,18 @@ def test_schema_modification():
|
|||||||
x.get("type") == "array" for x in schema["properties"]["categories"]["anyOf"]
|
x.get("type") == "array" for x in schema["properties"]["categories"]["anyOf"]
|
||||||
)
|
)
|
||||||
assert schema["properties"]["categories"]["title"] == "Categories"
|
assert schema["properties"]["categories"]["title"] == "Categories"
|
||||||
|
assert schema["example"] == {
|
||||||
|
"id": 0,
|
||||||
|
"name": "string",
|
||||||
|
"categories": [{"id": 0, "name": "string"}],
|
||||||
|
}
|
||||||
|
|
||||||
|
schema = Category.schema()
|
||||||
|
assert schema["example"] == {
|
||||||
|
"id": 0,
|
||||||
|
"name": "string",
|
||||||
|
"items": [{"id": 0, "name": "string"}],
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
def test_schema_gen():
|
def test_schema_gen():
|
||||||
|
|||||||
Reference in New Issue
Block a user